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ABSTRACT

Modern recommender systems usually include separate recom-
mendation carousels such as ‘trending now’ to list trending items
and further boost their popularity, thereby attracting active users.
Though widely useful, such ‘trending now’ carousels typically gen-
erate item lists based on simple heuristics, e.g., the number of in-
teractions within a time interval, and therefore still leave much
room for improvement. This paper aims to systematically study this
under-explored but important problem from the new perspective of
time series forecasting. We first provide a set of rigorous definitions
related to item trendiness and formulate the trend recommenda-
tion task as a one-step time series forecasting problem. We then
propose a deep latent variable model, dubbed Trend Recommender
(TrendRec), to forecast items’ future trends and generate trending
item lists. Furthermore, we design associated evaluation protocols
for trend recommendation. Experiments on real-world datasets
from various domains show that our TrendRec significantly out-
performs the baselines, verifying our model’s effectiveness.
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1 INTRODUCTION

Nowadays, recommender systems (RecSys) have been widely
adopted in real-world scenarios [12, 13, 15, 19, 33, 40]. It is common
to design a variety of recommendation carousels on the homepages
of websites or mobile apps to explore and capture different perspec-
tives of user interests, such as ‘recommended for you’ [24], ‘buy it
again’ [7], ‘frequently bought together’ [10, 37], etc. In this work,
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we study an important yet under-explored class of recommendation
carousels called ‘trending now’, which identify the trends at the
current moment and promote trending items to the users.

Recommender systems are known to suffer from the ‘rich-get-
richer’ problem, where popular items are more likely to be rec-
ommended [1, 34]. While the global or recent popular items are
frequently captured by recommendation carousels such as ‘rec-
ommended for you’ (due to popularity bias [41, 43]) and ‘recent
popular’, we hope the ‘trending now’ carousel can provide a com-
plementary perspective by promoting items that are not frequently
appearing in other carousels, but are rising fast in popularity and
have the potential to become popular in the near future.

Despite its significance in practice, there is surprisingly lim-
ited previous research on modeling trend in the recommendation
context. Existing related works [2, 4, 23, 26, 42] focus on either mod-
eling trend to improve personalized recommendation or identifying
trends in a non-recommendation scenario such as social media;
none of them focus on recommending trending items. To bridge
this gap, in this paper, we formally define the notion of ‘trend’,
formulate the trend recommendation task for our specific use case,
and develop new models tailored for this task.

Specifically, we first define popularity as the number of inter-
actions at a certain time interval. We then define ‘trend’ in the
recommendation context as the change rate of popularity, or accel-
eration. In line with the definitions above, the primary target of the
‘trending now’ carousel is to identify and promote items that are
receiving increasingly more interactions at the current moment,
while these items are not necessarily the global or recent most
popular items. This can also be viewed as conducting an effective
item exploration without popularity bias. In fact, through our data
analysis, we observed a relatively low overlap between the popular
items and the trending items based on our definition.

It is desirable to capture the current trend instantly and recom-
mend trending items in real time. However, in reality, a certain
amount of time is required to collect sufficient interactions in order
to reliably and stably identify the current trends, while the trends
are changing dynamically and may drift during data collection pe-
riod. Given this challenge, we formulate the trend recommendation
task as a one-step forecasting problem. Fig. 1(left) demonstrates our
problem setting: given items’ historical accelerations, we aim to
predict which items will be trendy in a short future time interval,
i.e., the next time step. This formulation is closely aligned with on-
line real-world scenarios: once the model predicts trending items
at the next time step, we display them to users throughout the next
time step while buffering data at the back-end. At the end of the
next time step, the model makes new predictions for the time step
right after it based on newly accumulated data. We then refresh the
recommendations and start another cycle of data collection.
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Figure 1: Left: Our problem definition on trend recommendation, where given items’ historical accelerations, we predict their

accelerations at the next time step and rank them accordingly for trend recommendation. In this example, the rank order

would be [item B, item A]. Right: Motivation for TrendRec: two items with large percentage of overlapping users exhibit

similar trends.

So, how should we design a trend recommender that is optimized
under our specific use case? Naturally, one could build on existing
time series forecasting models. There is a rich literature on this
topic. Among them, the state of the art is sequential deep learning,
which adaptively learns how to effectively ingest historical time
series as context and predicts future [18, 20, 22, 28, 31, 35, 39].

On top of time series forecasting models, the unique property of
the recommendation context offers interesting new opportunities
for adapting these models in our scenario. Specifically, beyond just
coarse cumulative numbers of interactions for each item in the time
series, there exist more fine-grained user-item interactions in our
setting. In other words, for a given item, we not only know how
many users have interacted with it, but also know who exactly
these users are. This brings additional information to help us dis-
cover the underlying correlations between items; items with a large
number of overlapping users may share common trend patterns,
and therefore improve the trend forecasting accuracy. Fig. 1(right)
illustrates our modeling motivation.

In this paper, we design a principled model, dubbed TrendRec,
for trend recommendation. Our model can be instantiated with any
deep learning based time series forecasting models, and is capable
of leveraging user-item interactions as additional context. Tren-
dRec is a two-phase framework and is trained step-by-step on both
the auxiliary objective of next item recommendation as well as the
primary time series forecasting objective of next-step acceleration
prediction. Specifically, through initial training on the next item
recommendation objective, TrendRec leverages user-item inter-
active signals to detect the underlying correlations across items
and encode such knowledge as item embeddings. In the second
phase training, the learned item embeddings are used to provide
additional context on the respective time series for the time series
forecasting objective. Our main contributions are summarized as
follows:

• We formally define the notion of ‘trend’ in the recommenda-
tion context, and establish corresponding evaluation metrics
and evaluation process.

• We identify a bias-variance tradeoff that prevents the model
from discovering the trend timely and stably: variance in-
troduced by data sparsity, and bias introduced by temporal
drift. Based on this observation, we then formulate the trend

recommendation task as a one-step time series forecasting
problem.

• Grounded on the unique property of the recommendation
scenario, we develop a principled two-phase model, dubbed
TrendRec, which leverages the user-item interactive signals
to uncover the underlying correlations across items and
ingest such knowledge to facilitate trend forecasting.

• Extensive experiments on datasets from a wide range of
domains including retail, media, and news demonstrate the
robustness and effectiveness of the proposed model.

2 PRELIMINARIES

In this section we first introduce trend-related terms and trend defi-
nition, followed by our formal definition of trend recommendation
problem, and then we introduce some basic models which will be
used as baselines in the experiment section.

2.1 Defining Acceleration as Trend

We first define the following terms that will be used in the rest of
the paper:

(1) Time Step: The time step is a time interval with a predefined
duration Δ𝑡 (e.g., one hour). We denote the time step with
time interval [𝑡 · Δ𝑡, (𝑡 + 1) · Δ𝑡] as time step 𝑡 , where 𝑡 is
the time step index.

(2) Velocity: For an item 𝑗 , we define its number of interactions
collected during time step 𝑡 as its velocity at time step 𝑡 ,
and denote it as W𝑗𝑡 ∈ R. Here W𝑗𝑡 represents item 𝑗 ’s
popularity per unit time Δ𝑡 .

(3) Acceleration: We denote the acceleration for item 𝑗 at
time step 𝑡 as A𝑗𝑡 ∈ R, and compute it as A𝑗𝑡 = ΔW𝑗𝑡 =

W𝑗𝑡 −W𝑗 (𝑡−1) . Here A𝑗𝑡 represents that item 𝑗 ’s velocity
is changing ΔW𝑗𝑡 per unit time Δ𝑡 .

Trend Definition. For an item 𝑗 , we define its trend at time
step 𝑡 to be its acceleration at time step 𝑡 , which is A𝑗𝑡 . An item
𝑗 is considered as trendy at time step 𝑡 if its acceleration A𝑗𝑡 is
among the highest of all items’ accelerations at time step 𝑡 . In the
following part, the terms ‘acceleration’ and ‘trend’ will be used
interchangeably as they are equivalent in our definition.
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Why define acceleration as trend in the recommendation

regime? The trending now carousel is expected to recommend a
complementary group of items, which rarely overlap with items
recommended by other carousels, yet are receiving increasingly
more interactions. These trending up items are not necessarily
the global or recent most popular items. Recommending items
with large accelerations allows us to conduct an effective item
exploration on promising trending up items that may not be popular
yet, raising their exposure rate to further facilitate their trends.
Some exemplar types of targeting items are as follows:
• Recently released cold items of good quality (e.g., a new episode
of Game of Thrones).

• Items experiencing sudden changes (e.g., a movie won an Oscar
award and abruptly becomes trendy).

• Long lasting items with periodic up-trend (e.g., items with
seasonal effect such as winter clothes).

2.2 Problem Definition

Ideally, we promptly detect the current trend and recommend trend-
ing items in real time. Nevertheless, in practice, a certain amount
of time is necessary for accumulating adequate interactions to en-
sure reliable identification of the current trend, while trends are
subject to dynamic variations and may drift during the course of
data collection. In other words, we hope the time interval Δ𝑡 to
be small enough so that A𝑗𝑡 reflects the trend at the current mo-
ment, but with a small Δ𝑡 , A𝑗𝑡 can be noisy due to insufficient data
collected during Δ𝑡 . Therefore, we argue that instead of capturing
and surfacing trending items in real-time, it is more feasible and
reasonable to predict and display trending items in a short future
time interval, while frequently update our recommendations based
on the newly collected data.

Based on the observation above, we define the trend recommen-
dation task as a one-step time series forecasting problem. Formally,
for each item, given its historical acceleration [A𝑗0,A𝑗1, . . . ,A𝑗𝑡 ] :=
A𝑗,0:𝑡 and additional contextual information [C𝑗0,C𝑗1, . . . ,C𝑗𝑡 ] :=
C𝑗,0:𝑡 such as covariates [31], we hope to predict its acceleration at
the next time step 𝑡 + 1

P(A𝑗 (𝑡+1) |A𝑗,0:𝑡 ,C𝑗,0:𝑡 ), (1)

and we recommend the top 𝑘 items based on the trend prediction.
Hypothesis on correlations between the time step length

and the task feasibility. It is worth noting that different lengths of
time steps suggest different sets of ground-truth items (e.g., whether
to predict the top 𝑘 items with highest acceleration in the next one
hour or in the next one day), and thus will be mapped to different
problems of different difficulty levels. The correlations between
the task feasibility and the time step length is postulated as the
curve shown in Fig. 2, which essentially depicts a bias-variance
tradeoff: when the time step length is small (e.g., one hour), variance
is introduced due to data sparsity; when the time step length is large
(e.g., one day), bias is introduced due to temporal drift. Therefore,
we need to find a ‘sweet spot’ that strikes a good balance between
the two.

Later in Sec. 4.3 we propose two evaluation metrics for accel-
eration which are closely aligned with our trendiness definition
and the problem formulation for trend recommendation. The above

Time Step Length 𝚫𝐭

Task Feasibility

Variance from 
Data Sparsity

Bias from 
Temporal Drift

Enough data, 
mild temporal drift

Figure 2: Hypothesis on the correlation between the task

feasibility and the time step length Δ𝑡 . When Δ𝑡 is small, the

trend can be noisy due to insufficient collected data, introduc-

ing variance; when Δ𝑡 is large, the trendmay already changed

due to the long process of data collection, leading to bias. We

therefore propose a bias-variance tradeoff over the choice

of Δ𝑡 with the goal of finding a balance. This hypothesis is

verified by experimental results in Sec. 4.5.

hypothesis is validated by experimental results based on the pro-
posed metrics (refer to Sec. 4.5 for more details) on a variety of
datasets across different domains. We further develop an adaptive
mechanism to select the most appropriate time interval Δ𝑡 for each
dataset.

2.3 Baseline Models

Here we present various basic models for trend recommendation.
Based on the problem definition in Sec. 2.2, it is natural to lever-
age existing methods designed for the time series forecasting task.
We first describe two widely adopted heuristic models and then
introduce a generic form of deep learning based probabilistic time
series forecasting models. All models introduced here will be used
as baselines in the experiment section.

2.3.1 Markov Heuristic Model. we assume an arbitrary item 𝑗 ’s
acceleration at the next time step A𝑗 (𝑡+1) only depends on its accel-
eration at the current time stepA𝑗𝑡 . Since in reality the accelerations
are prone to remain the same over short period of time, we define
the Markov heuristic model as:

Â𝑗 (𝑡+1) = A𝑗𝑡 , (2)

where Â𝑗 (𝑡+1) is the predicted acceleration at the next time step.
Note that the Markov heuristic model is essentially a special case
of AR [9].

2.3.2 Exponential Moving Average (EMA) Heuristic Model. The
main drawback of the Markov heuristic model is that the item
acceleration at the next time step is exclusively influenced by the
current time step, which can be noisy due to issues such as data
sparsity. We therefore hope to take multiple latest time steps into
consideration, assigning more weights to the more recent time
steps. This leads us to define the Exponential Moving Average
(EMA) heuristic model as below:

Â𝑗 (𝑡+1) =
𝑇−1∑︁
𝑘=0

𝑤𝑘 · A𝑗 (𝑡−𝑘 ) , (3)
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where Â𝑗 (𝑡+1) is the predicted acceleration at the next time step, 𝑇
is the number of recent time steps the model is considering, and
𝑤𝑘 is the predefined weight which decays exponentially with the
increasing number of steps away from the current time step. Note
that the EMA model can be viewed as a special case of ARIMA [8].

2.3.3 Deep Learning based Time Series Forecasting Model. The
heuristic models typically encode general assumptions that lack
the flexibility to adapt to diverse scenarios. However, the acceler-
ation patterns vary across domains (retail, media, news, etc.). For
example, there exist abundant periodical acceleration patterns of
different cadences (daily, weekly, seasonal, etc.) in both retail and
media domains, such as a new episode of a TV series is released ev-
ery Wednesday. On the contrary, such regular acceleration patterns
are rarely observed in the news domain, as news are time-sensitive
and people tend to follow most recent news. Additionally, even
within the same domain, various acceleration patterns may coexist.
For example, on a specific movie platform, the acceleration curve
of newly released action movies may consistently exhibit a steeper
increase compared to that of newly released documentary movies
due to the preference of the user community on that platform.

A more general solution for trend recommendation is therefore
to design a learnable deep learning based time series forecasting
model that is adaptive to a variety of scenarios. We formulate the
model as:

P(A𝑗 (𝑡+1) |A𝑗,0:𝑡 ,C𝑗,0:𝑡 ) = 𝑓seq (A𝑗,0:𝑡 ,C𝑗,0:𝑡 ), (4)

where 𝑓seq (·) is a sequential model that aggregates the historical
accelerations and projects the probabilistic distribution of the ac-
celeration at the next time step. There is a rich body of literature
under the topic of deep learning based sequential time series fore-
casting which adopted different sequential models 𝑓seq (·), such as
DeepAR [31] based on RNN, MQCNN [35] based on CNN, TFT [22]
based on transformer, and so on.

3 TRENDREC: COLLABORATIVE TIME SERIES

FORECASTING MODEL WITH USER-ITEM

INTERACTIONS

In this section, we present our TrendRec, a principled two-phase
model which detects item correlations from user-item interactions
to facilitate the trend forecasting. It is compatible with any deep
learning based time series forecasting models.

3.1 Model Overview

Unlike typical time series forecasting scenarios where the input data
is one or multiple series of values (e.g., a time series of daily product
consumption of a company) [22, 31, 35], the unique recommenda-
tion context promises more fine-grained user-item interactions
instead of coarse cumulative number of interactions for each item
at each time step. Such user-item interactions provide extra infor-
mation beyond the number of interactions of an item, as they also
reveal the exact group of users who interacted with the item. It is a
reasonable assumption that items with lots of overlapping interac-
tive users are likely to have common item properties and targeting
users, therefore possess similar trend (acceleration) patterns. For
example, ‘The Avengers’ and ‘Justice League’ are both superhero
movies that appeal to a similar audience, and have a significant

number of overlapping viewers. As a result, they have very similar
trends: a strong opening weekend as their fan base rushes to watch
them, followed by a gradual decline in the following weeks.

To distill knowledge from user-item interactions, we design an
auxiliary training objective on next item recommendation task.
This objective facilitates representation learning on item properties
and yields dense latent item embeddings. The generated latent item
embeddings envelop underlying correlations between items which
are implied by user-item interactions, and can be employed to facil-
itate the time series forecasting objective by providing additional
context for the corresponding time series.

Overall, TrendRec encompasses two components: a recommen-
dation model and a time series forecasting model. The recommen-
dation model is trained on the next item recommendation objective
with user-item interactions. The time series forecasting model is
trained on the next-step acceleration prediction objective with time
series of items’ accelerations. The two components are connected
through the shared latent item embeddings which encode item
correlations.

Fig. 3 shows the probabilistic graphical model (PGM) for Tren-
dRec, which is partially inspired by collaborative deep learning
(CDL) [33] and ZESRec [12]. It integrates two training objectives:
(1) next item recommendation (right part), and (2) item acceleration
forecasting (left part). Below we explain its rationale in detail:

• Variables V𝑗𝑡 ∈ R𝐷 , A𝑗,0:𝑡 ∈ R𝑁 𝑗𝑡 represent item 𝑗 ’s properties
till time step 𝑡 (both static properties and dynamic properties)
and item 𝑗 ’s historical acceleration till time step 𝑡 which is
[A𝑗0,A𝑗1, . . . ,A𝑗𝑡 ], respectively. 𝑁 𝑗𝑡 denotes the number of
historical time steps of item 𝑗 till time step 𝑡 . 𝐷 is the hidden
dimension of the embedding.

• Variables U𝑖𝑡 ∈ R𝐷 and S𝑖𝑡 ∈ R𝑁𝑖𝑡×𝐷 represent user 𝑖’s inter-
ests till time step 𝑡 and user 𝑖’s historical interaction sequence
till time step 𝑡 , respectively. Here 𝑁𝑖𝑡 is the number of inter-
actions from user 𝑖 till time step 𝑡 . S𝑖𝑡 is an embedding matrix
and each row of it represents an item embedding.

• Variable R𝑖 𝑗𝑡 ∈ {0, 1} is the interaction label denoting whether
user 𝑖 interacted with item 𝑗 at time step 𝑡 .

• Variable A𝑗 (𝑡+1) ∈ R is the acceleration of item 𝑗 at the next
time step 𝑡 + 1.

• Edge S𝑖𝑡 → U𝑖𝑡 : User’s previous interactions reveal the user
interests and affect the user’s next action (e.g., a user who
purchased a cell phone may want to purchase its accessories
next).

• Edge {U𝑖𝑡 ,V𝑗𝑡 } → R𝑖 𝑗𝑡 : Interaction depends on user interests
U𝑖𝑡 and item properties V𝑗𝑡 .

• Edge {V𝑗𝑡 ,A𝑗,0:𝑡 } → A𝑗 (𝑡+1) : The acceleration of item 𝑖 at the
next time step 𝑡+1 is influenced by item’s properties (e.g., action
movie is more likely to become trendy in the user community
of a specific website) and item’s historical acceleration (e.g., an
item with periodical weekly trend pattern).

HereU𝑖𝑡 ,V𝑗𝑡 are the learnable embeddings with the same hidden di-
mension𝐷 , and we term them, latent user embedding and latent item
embedding, respectively. _𝑢 and _𝑣 , are hyperparameters related
to distribution variance. The corresponding conditional probabil-
ities in the PGM are listed in Eqn. 5. In general, TrendRec is an
organic combination of a recommender system (RecSys) and a time
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Figure 3: The probabilistic graphical model (PGM) for our TrendRec. Overall, U𝑖𝑡 ,V𝑗𝑡 are the hidden variables, _𝑢 and _𝑣 are

the hyperparameters related to the distribution variance of U𝑖𝑡 and V𝑗𝑡 , respectively, while S𝑖𝑡 , R𝑖 𝑗𝑡 , A𝑗 (𝑡+1) , and A𝑗,0:𝑡 are the
observed variables. Specifically, U𝑖𝑡 and S𝑖𝑡 represent user 𝑖’s interests till time step 𝑡 and user 𝑖’s historical interaction sequence

till time step 𝑡 , respectively. V𝑗𝑡 and A𝑗,0:𝑡 represent item 𝑗 ’s properties till time step 𝑡 and item 𝑗 ’s historical accelerations till

time step 𝑡 , respectively. R𝑖 𝑗𝑡 is the interaction label denoting whether user 𝑖 interacted with item 𝑗 at time step 𝑡 , and A𝑗 (𝑡+1) is
the item 𝑗 ’s acceleration at the next time step 𝑡 +1. Time step 𝑡 represents the time interval [𝑡 ·Δ𝑡, (𝑡 +1) ·Δ𝑡]. 𝐼 , 𝐽 ,𝑇 denote number

of users, number of items, and number of time steps, respectively. Note that we define P(U𝑖𝑡 |S𝑖𝑡 , _𝑢 ) = N(U𝑖𝑡 ; 𝑓seq (S𝑖𝑡 ), _−1𝑢 I𝐷 ))
and P(A𝑗 (𝑡+1) |V𝑗𝑡 ,A𝑗,0:𝑡 ) = 𝑓ts (V𝑗𝑡 ,A𝑗,0:𝑡 ), and both 𝑓seq (·) and 𝑓ts (·) are learnable functions. For simplicity we exclude their

corresponding learnable parameters in the PGM.

series forecasting model. The PGM for classic sequential RecSys
models such as [15, 19, 32] is essentially the subgraph of Fig. 3 with
nodes 𝑆𝑖𝑡 ,𝑈𝑖𝑡 , 𝑅𝑖 𝑗𝑡 ,𝑉𝑗𝑡 , _𝑢 , and _𝑣 . The PGM for classic sequential
time series forecasting models such as [22, 31, 35] is essentially the
subgraph of Fig. 3 with nodes A𝑗,0:𝑡 and A𝑗 (𝑡+1) .

Generative Process. Inspired by CDL [33] and ZESRec [12],
the generative process in Fig. 3 is defined as follows:

For each time step 𝑡 ∈ [𝑇 ]:
(a) For each item 𝑗 ∈ [𝐽 ]:
• Draw a latent item offset vector 𝝐𝑣

𝑗𝑡
∼ N

(
0, _−1𝑣 I𝐷

)
.

• Adopt the latent item offset vector as the latent item em-
bedding: V𝑗𝑡 = 𝝐𝑣

𝑗𝑡
.

• Compute the acceleration for time step 𝑡 + 1: A𝑗 (𝑡+1) =

𝑓𝑡𝑠 (A𝑗,0:𝑡 ,V𝑗𝑡 ).
(b) For each user 𝑖 ∈ [𝐼 ]:

• Draw a latent user offset vector 𝝐𝑢
𝑖𝑡
∼ N

(
0, _−1𝑢 I𝐷

)
.

• Obtain the user embedding: n𝑖𝑡 = 𝑓seq (S𝑖𝑡 ).
• Compute the latent user embedding: U𝑖𝑡 = 𝝐𝑢

𝑖𝑡
+ n𝑖𝑡 .

• Compute the recommendation score Y𝑖 𝑗𝑡 for each user-
item pair (𝑖, 𝑗) as Y𝑖 𝑗𝑡 = 𝑓softmax (U⊤

𝑖𝑡
V𝑗𝑡 ). For user 𝑖 we

compute the recommendation scores for all items: R𝑖∗𝑡 ∼
𝐶𝑎𝑡 ( [Y𝑖 𝑗𝑡 ] 𝐽𝑗=1), where ‘∗’ represents the collection of all
elements in a specific dimension, and 𝐶𝑎𝑡 (·) denotes a cat-
egorical distribution.

Here 𝐼 , 𝐽 , 𝑇 denote number of users, number of items, and
number of time steps, respectively. 𝑓softmax (·) is the softmax
function, and 𝑓softmax (U⊤

𝑖𝑡
V𝑗𝑡 ) = exp(U⊤

𝑖𝑡
V𝑗𝑡 )/

∑𝐽
𝑗=1 exp(U

⊤
𝑖𝑡
V𝑗𝑡 ).

N(x; 𝝁, _−1I𝐷 ) denotes the probability density function (PDF) of a
Gaussian distribution with mean 𝝁 and diagonal covariance _−1I𝐷

for the variable x. 𝑓𝑡𝑠 (·) represents any type of probabilistic time
series forecasting model which consumes both item historical ac-
celerations and latent item embeddings to predict the probabilistic
distribution of acceleration at the next time step 𝑡+1. 𝑓seq (·) denotes
any type of sequential recommender system which generates the
user embedding based on user’s historical interactions, and in this
work we adopt the classic recommender system, GRU4Rec [15].

3.2 Training

Maximum a Posteriori (MAP) Estimation. Given the graphical
model in Fig. 3, we hope to estimate the latent variables U𝑖𝑡 and V𝑗𝑡

as well as the learnable parameters in functions 𝑓seq (·) and 𝑓ts (·).
Note that for simplicity, we exclude the learnable parameters of
𝑓seq (·) and 𝑓ts (·) in the PGM. The maximum a posteriori (MAP)
estimation can be decomposed as follows:

P(U𝑖𝑡 ,V𝑗𝑡 |R𝑖 𝑗𝑡 ,A𝑗 (𝑡+1) , S𝑖𝑡 ,A𝑗,0:𝑡 , _𝑢 , _𝑣, ) ∝
P(R𝑖 𝑗𝑡 |U𝑖𝑡 ,V𝑗𝑡 ) · P(A𝑗 (𝑡+1) |A𝑗,0:𝑡 ,V𝑗𝑡 ) · P(U𝑖𝑡 |S𝑖𝑡 , _𝑢 ) · P(V𝑗𝑡 |_𝑣) .

(5)

Below we explain each conditional probability from Eqn. 5 in detail.
We assume Gaussian distributions on latent variables U𝑖𝑡 and

V𝑗𝑡 in Fig. 3 as follows:

P(U𝑖𝑡 |S𝑖𝑡 , _𝑢 ) = N(U𝑖𝑡 ; 𝑓seq (S𝑖𝑡 ), _−1𝑢 I𝐷 ), (6)

P(V𝑗𝑡 |_𝑣) = N(V𝑗𝑡 ; 0, _−1𝑣 I𝐷 ) . (7)

For the next item recommendation, we define the conditional
probability over the observed interactions as:

P(R𝑖 𝑗𝑡 |U𝑖𝑡 ,V𝑗𝑡 ) = 𝑓softmax (U𝑇𝑖𝑡V𝑗𝑡 ) . (8)
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Figure 4: Model architecture for TrendRec from a neural network perspective. The left side figure shows the network structure,

and the right side figure illustrates the implementation details of each network component. In the right side figure, blue and

orange imply learnable components trained on the next item recommendation objective and learnable components trained

on the time series forecasting objective, respectively. Each SEQ block represents a specific time step of a sequential model.

Note that both figures are instantiated on a specific user-item pair (user 𝑖 and item 𝑗). Overall, TrendRec encompasses two

major components: (1) a sequential recommender, and (2) a collaborative time series forecasting model, and they are connected

through the learnable latent item embeddings.

For the time series forecasting, in line with Eqn. 4, we define the
conditional probability over the observed item accelerations as:

P(A𝑗 (𝑡+1) |A𝑗,0:𝑡 ,V𝑗𝑡 ) = 𝑓ts (A𝑗,0:𝑡 ,V𝑗𝑡 ). (9)

Negative Log Likelihood (NLL). Maximizing the posterior
probability is equivalent to minimizing the negative log likelihood
(NLL) of P(U𝑖𝑡 ,V𝑗𝑡 |R𝑖 𝑗𝑡 ,A𝑗 (𝑡+1) , S𝑖𝑡 ,A𝑗,0:𝑡 , _𝑢 , _𝑣, ). We substitute
each terms in Eqn. 5 with our definitions in Eqn. 6, Eqn. 7, Eqn. 8,
and Eqn. 9, and compute the NLL as:

L = −
𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

R𝑖 𝑗𝑡 log(𝑓softmax (U𝑇𝑖𝑡V𝑗𝑡 )) (10)

−
𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

log(ℓ (A𝑗 (𝑡+1) |𝑓𝑡𝑠 (A𝑗,0:𝑡 ,V𝑗𝑡 )) (11)

+ _𝑣
2

𝐽∑︁
𝑗=1

| |V𝑗𝑡 | |2 + _𝑢
2

𝐼∑︁
𝑖=1

| |U𝑖𝑡 − 𝑓seq (S𝑖𝑡 ) | |2 (12)

where 𝑓seq (S𝑖𝑡 ) = n𝑖𝑡 , and ℓ (·) represents a likelihood function
adopted by the probabilistic time series forecasting model. Note
that we train hidden variables Uit and Vjt as well as the function
𝑓seq (·) and 𝑓ts (·) based on the NLL training objective above. Below
we describe the intuition of each term in L.
(1) Next Item Recommendation Loss (Eqn. 10). Minimizing

this term improves the next item recommendation performance
in the training set.

(2) Time Series Forecasting Loss (Eqn. 11). Minimizing this
term improves acceleration forecasting in the training set.

(3) Regularizing Latent Item Embedding V𝑗𝑡 and Latent User

Embedding U𝑖𝑡 (Eqn. 12). The first term regularizes the latent
item embedding V𝑗𝑡 to be close to the zero-mean Gaussian
prior. The second term regularizes the latent user embedding
U𝑖𝑡 to be close to the computed 𝑓seq (S𝑖𝑡 ) as user history implies

user interests, while providing flexibility for U𝑖𝑡 to deviate
from 𝑓seq (S𝑖𝑡 ) as users with the same history may still have
non-overlapping interests.

3.3 Inference

During inference, we only focus on the time series forecasting task
and predict the acceleration as below:

P(A𝑗 (𝑡+1) |A𝑗,0:𝑡 ,V∗
𝑗𝑡 ) = 𝑓 ∗ts (A𝑗,0:𝑡 ,V∗

𝑗𝑡 ), (13)

where with a bit overload on ∗, we use V∗
𝑗𝑡
to denote the posterior

of item 𝑗 ’s latent item embedding, and 𝑓 ∗ts (·) to denote the trained
sequential time series forecasting model.

3.4 Model Architecture

Fig. 4 shows the model architecture from the neural network point
of view. The left side figure demonstrates the overview network
structure, while the right side figure visualizes the full details of
the TrendRec implementation. In general, the model contains two
principal components: (1) a sequential recommender, and (2) a
collaborative time series forecasting model. These two components
are joined through the learnable latent item embeddings. Below we
elaborate on the process in terms of two training objectives: the
next item recommendation objective and the time series forecasting
objective.

Next Item Recommendation Objective. For the next item
recommendation objective, TrendRec generates the latent user
embedding from a sequential recommender, and adopts latent item
offset vector as the latent item embedding. The recommendation
score is calculated based on the inner product between the latent
user embedding and the latent item embedding, which is subse-
quently normalized by the softmax function 𝑓softmax (·).

Time Series Forecasting Objective. For the time series fore-
casting objective, for each item, TrendRec retrieves the latent item
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embedding pre-trained on the next item recommendation objective
and utilizes it in conjunction with the item historical accelerations
to predict the acceleration at the next time step.

In the experiment, for simplicity, we remove the regularization
term on the latent user embedding, and decouple the training pro-
cess by initially training on the next item recommendation (NIR)
objective (Eqn. 14), followed by training on the time series forecast-
ing (TSF) objective (Eqn. 15) which is our primary target:

LNIR = −
𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

R𝑖 𝑗𝑡 log(𝑓softmax (U𝑇𝑖𝑡V𝑗𝑡 )) + _𝑣
2

𝐽∑︁
𝑗=1

| |V𝑗𝑡 | |2,

(14)

LTSF = −
𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

log(ℓ (A𝑗 (𝑡+1) |𝑓𝑡𝑠 (A𝑗,0:𝑡 ,V∗
𝑗𝑡 )), (15)

where V∗
𝑗𝑡
denotes the posterior of item 𝑗 ’s latent item embedding

after training on the NIR objective.

3.5 Practical Challenges and Solutions

We describe the unique practical impediments on adopting the time
series forecasting models in the trend recommendation scenario,
and propose various mechanisms to alleviate them.

Skewed Data. A real-world recommendation dataset usually
includes hundreds of thousands of items. Due to the well known
‘heavy-tail’ problem in the recommendation regime, the majority
of items are considered as cold items owing to low number of in-
teractions (e.g., less than five interactions). As a result, the time
series associated with these items exhibit nearly flat curves, hover-
ing around zero. The time series forecasting models can be biased
towards predicting zeros if a substantial proportion of such time
series exist in the training data.

Short Active Period. The time series of warm items may still
suffer from short active periods due to reasons below:

• Varying active periods across items: From data analysis, we
found it is pervasive that the item time series contain leading
zeros (because the item is not yet released) and trailing zeros
(because the item is no longer available). This is primarily
caused by the mismatch between the active periods of differ-
ent items. For example, item A might be introduced to the
market just as item B becomes unavailable.

• Short lifecycle: Items in certain domains have short lifecycles
by their nature. For example, in the news domain, the life-
cycle of an item normally spans less than one day as most
people only pay attention to today’s news.

Solutions. The aforementioned issues essentially pertain to data
sparsity, and a principled solution is to filter out noise in the training
data to avoid the garbage-in-garbage-out conundrum. In practice,
we inspect the acceleration curve for each item and select top [% of
items that display the most dynamic changes in acceleration, where
[ is a tunable hyperparameter. The dynamic nature of acceleration
for an item 𝑗 is measured with the metric D𝑗 =

∑𝑇
𝑡 |A𝑗𝑡 |. We

further adopt training masks on the time series of selected items;
this enforces the model to focus on the active period and updates
gradients based on the non-zero values. Additionally, we implement
a range of mechanisms aimed at improving training stability and
inference latency, please refer to Appendix A for more details.

Table 1: Datasets Statistics.

Dataset Domain #Users #Items #Interactions

TaoBao Cat 1 Retail 392K 27K 4.18M
TaoBao Cat 2 Retail 352K 35K 2.96M
TaoBao Cat 3 Retail 343K 31K 2.90M

Netflix Media 478K 12K 89.33M
MIND News 749K 19K 3.96M

4 EXPERIMENTS

We evaluate the heuristic models, time series forecasting models,
and the proposed TrendRec on three public datasets from a variety
of domains including retail, media, and news, with the major goals
of addressing the following questions:

Q1 Does the proposed hypothesis on correlations between the
task feasibility and the time step length in Sec. 2.2 (see Fig. 2)
hold for all datasets? How do we select the time step length
for each dataset?

Q2 Does TrendRec outperform all the baseline models includ-
ing the heuristic models and the vanilla deep learning based
time series forecasting model?

4.1 Datasets

In the experiment, we consider three public datasets: (1) TaoBao
User Behavior dataset1 [44] in Retail domain, (2) Netflix dataset [6]
in Media domain, and (3) MIND dataset2 [36] in News domain.
(1) TaoBao User Behavior [44] is a public dataset containing

user behavior data from Taobao, one of the largest e-commerce
platforms in the world. It contains around 1M users, 4M items,
and covers 9 days of interaction data. Due to the large item
catalogue, in the experiment, we split the data by item cate-
gory, and select the top-3 item categories based on number of
interactions to construct three separate datasets. We call them
TaoBao Cat 1, TaoBao Cat 2, and TaoBao Cat 3, respectively.

(2) Netflix [6] is a classical recommendation dataset including
100M user ratings on movies with 17K items and 480K users.
We consider the densest time period from 2003 January to 2005
December for our experiment.

(3) MIND [36] is a large-scale news recommendation dataset col-
lected from the user interaction logs of Microsoft News. It
includes 1-week user-item interactions and 4-week impression
logs on 1M users and 160K news articles. In the experiment,
we only utilize the 1-week interactions as the impression logs
do not include timestamp information.

The statistics of the datasets after pre-processing are shown in
Table 1. We adopted a rigorous experimental setup to ensure there
is no temporal leakage between the next item recommendation
objective and the time series forecasting objective. Specifically, we
(1) temporally split the data such that all training interactions must
happen before all testing interactions and (2) use the exact same
training data for both objectives during the training phase.

4.2 Evaluated Methods

We consider the following methods during evaluation:

1https://tianchi.aliyun.com/dataset/649
2https://msnews.github.io/
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• Oracle, which has access to the ground truth future acceler-
ation at the next time step. Therefore, it always accurately
predicts the acceleration and recommends the correct top-𝑘
trending items.

• Random, which recommends items by random selection from
the whole item catalogue without replacement.

• Markov, which is a rule-basedmodel to predict the acceleration
at the next time step to be the same as the acceleration at the
current time step. See Sec. 2.3.1 for more details.

• Exponential Moving Average (EMA), which is a rule-based
model to predict the acceleration at the next time step based on
a weighted sum of accelerations at the latest𝑚 time steps (in
the experiment we set𝑚 = 8). The weight decays exponentially
with a factor of 0.75with increasing number of time steps away
from the current time step. See Sec. 2.3.2 for more details.

• DeepAR [31], which is one of the state-of-the-art time series
forecasting models built on an auto-regressive recurrent net-
work (RNN). See Sec. 2.3.3 for more details.

• TrendRec, which is our proposed two-phase model. It is in-
stantiated on the DeepAR model for the time series forecasting
task. The reason we choose DeepAR is twofold: (1) it is one
of the state-of-the-art time series forecasting models and has
been widely adopted, and (2) DeepAR is a likelihood method,
and therefore it is more suitable for computing MAP. For the
next item recommendation objective, we adopt GRU4Rec [15]
to learn the latent item embeddings.

4.3 Evaluation Metrics

Instead of adopting evaluation metrics such as RMSE from the time
series forecasting setting, we design evaluation metrics that are
closely aligned with the goal of trending now recommendation
carousel, which is to promote trending items at the next time step.
Different from typical time series forecasting settings, for trend
recommendation we are only interested in correctly recommending
the top-𝑘 trending items instead of accurately predicting the acceler-
ation for each item. Therefore, we design the metrics with emphasis
on measuring the model’s ability of identifying the items with large
acceleration at the next time step. Similar to the classical evalua-
tion metrics, Recall and NDCG, which are widely adopted in the
recommendation domain, we relate acceleration to relevance and
propose two evaluation metrics: Acceleration (Acc) and TNDCG.
Assuming the current time step is 𝑡 − 1, and we hope to evaluate on
the time step 𝑡 , we define the proposed metrics as follows.

4.3.1 Acceleration Metric. We first select the top-𝑘 items based
on the model’s predicted accelerations at the next time step 𝑡 , and
denote them as P. Then we map the selected 𝑘 items to their cor-
responding ground truth accelerations at the next time step 𝑡 as
{A𝑗𝑡 } 𝑗∈P . Since in our definition, acceleration is a quantitative
measurement of trendiness, we compute the sum of next time step
accelerations of the predicted items

∑
𝑗∈P A𝑗𝑡 and use it as the

model’s trendiness score. The higher the trendiness score, the better
the model at predicting the trending items at the next time step.

We hope to scale the metric in the range of [0, 1], and therefore
apply themin-max normalization on top of the trendiness score. The
upper bound of the trendiness score comes from the Oracle model:
we denote the ground truth top-𝑘 items with largest accelerations

at time step 𝑡 as O, and compute the trendiness score as 𝑇𝑘
oracle,t =∑

𝑗∈O A𝑗𝑡 . There is no lower bound for the trendiness score as the
acceleration can be an arbitrary negative value. We artificially set
the lower bound as the trendiness score of the Random model. This
also helps prevent over-penalization on poor recommendations at a
single time step, as themodel is evaluated onmultiple time steps (see
Sec. 4.4 formore details). The trendiness score for the Randommodel
is computed as the expectation over the acceleration summation of
𝑘 items sampled from an uniform distribution 𝑇𝑘

random,𝑡
=

𝑇𝑡
| 𝐽 | · 𝑘 ,

where 𝑇𝑡 =
∑𝐽

𝑗
A𝑗𝑡 . The final trendiness score for the model is

𝑇𝑘
model,𝑡 =𝑚𝑎𝑥 (∑𝑗∈P A𝑗𝑡 ,𝑇

𝑘
random,𝑡

). Finally, we combine different
trendiness scores to compute the acceleration metric at time step 𝑡 :

Acc@𝑘𝑡 =
𝑇𝑘
model,𝑡−𝑇

𝑘
random,𝑡

𝑇𝑘
oracle,𝑡−𝑇

𝑘
random,𝑡

, (16)

where 𝐴𝑐𝑐@𝑘𝑡 ∈ [0, 1].

4.3.2 TNDCG Metric. Our Trendiness-Normalized-DCG (TNDCG)
metric further takes the item’s rank position into consideration with
a logarithmic reduction factor. We use 𝑟 to index the rank position,
AP
𝑟 and AO

𝑟 to represent the acceleration of the item ranked at
position 𝑟 based on order from model prediction and ground truth,
respectively. Then we compute TDCG𝑘

model,𝑡 =
∑𝑘
𝑟=1

AP
𝑟

𝑙𝑜𝑔2 (𝑟+1) and

TDCG𝑘
oracle,𝑡 =

∑𝑘
𝑟=1

AO
𝑟

𝑙𝑜𝑔2 (𝑟+1) . The TDCG of Random model is

calculated as 𝑇𝑘
random,𝑡

=
∑𝑘
𝑟=1

𝑇𝑡
| 𝐽 | ·

1
𝑙𝑜𝑔2 (𝑟+1) . We use the min-max

normalization to scale the final TNDCG metric at time step 𝑡 to the
range of [0, 1]

TNDCG@𝑘𝑡 =
TDCG𝑘

model,𝑡−TDCG
𝑘
random,𝑡

TDCG𝑘
oracle,𝑡−TDCG

𝑘
random,𝑡

, (17)

and TNDCG@𝑘𝑡 ∈ [0, 1].

4.4 Evaluation Protocol

During evaluation, we split the training and test sets by times-
tamp, and leave the latest 20% time span for testing (e.g., eight-hour
training window, two-hour testing window). The evaluation is con-
ducted in a rolling fashion with a total of 𝑇 steps. For instance, the
test time span is two days while the time step length Δ𝑡 is six hours;
we therefore have 𝑇 = 8 evaluation steps.

After evaluation, we will have 𝑇 acceleration metrics for the
evaluated model, Random, and Oracle, respectively. We aggregated
them through a weighted sum

Acc@𝑘 =

∑𝑇
𝑡 Acc@𝑘𝑡 · (𝑇𝑘

oracle,𝑡−𝑇
𝑘
random,𝑡

)∑𝑇
𝑡 (𝑇𝑘

oracle,𝑡−𝑇
𝑘
random,𝑡

) =

∑𝑇
𝑡 (𝑇𝑘

model,𝑡−𝑇
𝑘
random,𝑡

)∑𝑇
𝑡 (𝑇𝑘

oracle,𝑡−𝑇
𝑘
random,𝑡

) , (18)

where Acc@𝑘 ∈ [0, 1]. The weight for each time step is 𝑇𝑘
oracle,𝑡 −

𝑇𝑘
random,𝑡

, and
∑𝑇
𝑡 (𝑇𝑘

oracle,𝑡 −𝑇𝑘
random,𝑡

) is the partition function for
normalization. The intuition behind our weight design is that a
time step is more important if the performance gap between Oracle
and Random is large at that time step, as there is a large room for
improvement.
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Figure 5: Validating our hypothesis on the correlation between the task feasibility and the time interval (i.e., time step length

Δ𝑡 ). Datasets from left to right are TaoBao (all three datasets), Netflix, and MIND. Note that the timestamp granularity of Netflix

is one day; hence we are only able to show the right-hand side of the full curve, where model has collected sufficient data but is

suffering from the temporal drift. Experimental results verified our proposed hypothesis in Sec. 2.2 (see Fig. 2).

Similarly, we calculate the aggregated TNDCG metric as

TNDCG@𝑘 =

∑𝑇
𝑡 TNDCG@𝑘𝑡 · (TDCG𝑘

oracle,𝑡−TDCG
𝑘
random,𝑡

)∑𝑇
𝑡 (TDCG𝑘

oracle,𝑡−TDCG
𝑘
random,𝑡

)

=

∑𝑇
𝑡 (TDCG𝑘

model,𝑡−TDCG
𝑘
random,𝑡

)∑𝑇
𝑡 (TDCG𝑘

oracle,𝑡−TDCG
𝑘
random,𝑡

) , (19)

where TNDCG@𝑘 ∈ [0, 1]. The weight for each time step
equals to TDCG𝑘

oracle,𝑡 − TDCG𝑘
random,𝑡

, and
∑𝑇
𝑡 (TDCG𝑘

oracle,𝑡 −
TDCG𝑘

random,𝑡
) is the partition function for normalization.

4.5 Hypothesis Validation (Q1)

We conduct experiments to validate the hypothesis proposed
in Fig. 2, which presumes a correlation curve between the task
feasibility and the time step length Δ𝑡 . Specifically, we evaluate the
performance of the Markov heuristic model, which simply projects
A𝑗 (𝑡+1) = A𝑗𝑡 , on a range of time intervals based on the acceler-
ation metric and plot the curve. The Markov heuristic model is a
rudimentary model grounded on a simple but generic assumption,
and therefore its performance should reflect the task feasibility.

The results are shown in Fig. 5. On TaoBao and MIND datasets,
the curves exhibit a clear trajectory that is consistent with our con-
jecture, where the acceleration metric first improves with increas-
ingly longer time interval due to alleviation on the data sparsity,
and then decreases due to temporal drift. On the other hand, the
curve on the Netflix dataset keeps decreasing. This is because the
timestamp granularity of the Netflix dataset is one day, which is
long enough to collect sufficient data but starts to suffer from the
temporal drift.

Overall, the results verify our hypothesis. In the following ex-
periments, we select the time interval Δ𝑡 for each dataset based on
the peak of respective curves: three-hour time interval for all three
TaoBao datasets for consistency, one-day time interval for Netflix,
and thirty-minute time interval for MIND.

4.6 Experimental Results (Q2)

We evaluate our proposed TrendRec against various baselines on
datasets from three domains: (1) TaoBao from the Retail domain,
(2) Netflix from the Media domain, and (3) MIND from the News

domain. The results are summarized in Table 2, from which we can
easily conclude that TrendRec demonstrates superior performance.
We have the following observations:
• TrendRec outperforms all baseline models. Our Tren-
dRec consistently shows better performance compared to the
baseline models across all the datasets. Since TrendRec’s time
series forecasting model is instantiated with DeepAR, the per-
formance gain over DeepAR demonstrates the effectiveness
of leveraging pre-trained latent item embeddings to boost the
time series forecasting performance.

• Performance improvement from TrendRec is associated

with the quality of latent item embeddings.While Tren-
dRec demonstrates the best performance on all cases, we ob-
serve that the improvement over DeepAR is most significant on
TaoBao, while it is marginal on Netflix and MIND. We present
TrendRec’s results on the auxiliary objective of next item rec-
ommendation in Table 3, where TrendRec shows significantly
better results on TaoBao compared to Netflix and MIND. Based
on this observation, we argue that the performance gain on the
time series forecasting objective, which comes from leveraging
pre-trained latent item embeddings, depends on the embedding
quality. Notably, this quality is positively related to TrendRec’s
performance on the next item recommendation objective.

• Deep learning based models significantly outperform

heuristic models. The deep learning based models (both
DeepAR and TrendRec) outperform the heuristic models by a
large margin, especially on TaoBao and Netflix datasets. The
results emphasize the importance of adopting a learnable model
for trend recommendation.

• The EMAmodel is worse than the Markov model in most

cases. Interestingly, the EMAmodel underperforms theMarkov
model in most cases. This shows that the trend is changing
dynamically and that the dependency relationship between
the trend at the next time step and historical trends is more
complicated than a simple weighted sum with recency bias.

• Performance gain from deep learning based models is

relatively small in the News domain. The performance
gap between the deep learning based models (both DeepAR
and TrendRec) and the heuristic models is relatively marginal
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Table 2: Trend recommendation results on three TaoBao datasets in the retail domain, the Netflix dataset in the media domain,

and the MIND dataset in the news domain. Based on the results in Sec. 4.5, in experiments we set the time step length Δ𝑡 to
three hours, one day, and thirty minutes for TaoBao (all three datasets for consistency), Netflix, and MIND, respectively. The

best results are shown in bold.

Method

TaoBao Cat 1 TaoBao Cat 2 TaoBao Cat 3 Netflix MIND

Acc@10 TNDCG@10 Acc@10 TNDCG@10 Acc@10 TNDCG@10 Acc@10 TNDCG@10 Acc@10 TNDCG@10

Markov 0.209 0.212 0.057 0.028 0.180 0.155 0.326 0.340 0.319 0.286
EMA 0.239 0.230 0.034 0.024 0.111 0.085 0.163 0.204 0.225 0.193
DeepAR 0.710 0.725 0.471 0.417 0.631 0.598 0.531 0.505 0.365 0.348
TrendRec 0.758 0.769 0.540 0.484 0.651 0.616 0.534 0.513 0.383 0.374

Table 3: Next item recommendation results on all datasets.

All experiments are conducted with GRU4Rec [15].

Method TaoBao Cat1 TaoBao Cat2 TaoBao Cat3 Netflix MIND

Recall@20 0.223 0.230 0.251 0.072 0.024
NDCG@20 0.114 0.116 0.131 0.027 0.009

in the News domain compared to Retail and Media domains.
Analyzing item time series from the News domain reveals that
items typically reach their maximum acceleration in a short
period of time once they are released, which is followed by a
sudden drop. This is primarily due to the time-sensitive nature
of news, and poses a great challenge for deep learning based
models. As we only focus on top items with large accelerations
at each time step, the major goal of deep learning based models
is to learn how to accurately forecast the items’ acceleration
when they are trendy given limited context (historical trends).

5 RELATEDWORK

Trend Modeling. There are limited previous works have been
done on the topic of trend modeling in the recommendation con-
text, while the existing works [3, 23, 25] typically refer to recent
popularity as trend, which is velocity in our term. We argue that
promoting recent popular items in the ‘trending now’ recommen-
dation carousel will not only amplify the ‘rich-get-richer’ problem,
but also will lead to redundant recommendations compared with
other carousels such as ‘recent popular’. Moreover, none of these
works focus on recommending trending items. For example, [23]
leverages the trend information to probe users’ potential interests,
which have not been shown in their historical interactions, in order
to improve next item recommendation for the users. Another line of
research [2, 26, 27, 38, 42] studies trends in another scenario: social
media (e.g., Twitter), and adopts a distinct problem setting from
ours. For instance, [26] tries to detect bursty keywords from recent
tweets, and then identify trending topics based on them. Overall, the
previous works in trend modeling are either focusing on a different
task or set in a distinct scenario. Therefore their proposed methods
are not adaptable to our use case of trend recommendation.

Time Series Forecasting. Time series forecasting goes back to
several decades in statistical approach including ARIMA [8], ETS
[16]. However, neural networks showed little success in the fore-
casting literature until recently. With the explosive sample of time
series data available and advances in neural architectures, deep
learning for forecasting has become increasingly popular, which

includes the architectures of RNN [30, 31, 35], CNN [20, 35], Trans-
former [20, 22, 39]. Most of these methods support probabilistic
forecasting in either distribution-assumed manner as a likelihood
approach [20, 29, 31] or distribution-free manner with quantile
regression [18, 22, 28, 35]. Multivariate (or local) modelings like
DeepVAR [30] are often preferred due to its capacity to encode the
correlation between time series or items, but global modeling like
DeepAR [31] or MQ-R(C)NN [35] are still widely used by leverag-
ing data samples efficiently. See [17] for more detailed review on
modern deep forecasting.

Adopting Time Series Models in Recommendation. Vari-
ous prior research [5, 11, 14, 21, 45] has explored adopting time
series models to model the temporal information in the recom-
mendation scenario, with the primary goal of improving next item
recommendation performance. STEN [21] employs temporal point
processes to model the impact of friends’ behaviors on users’ dy-
namic interests. LSHP [11] considers Hawkes Process to model
the long-term and short-term dependency between users’ online
interactive behaviors. Different from the aforementioned works,
our main focus lies in accurately predicting trending items in the
near future. Additionally, we design an auxiliary training objec-
tive to distill item correlations from user-item interactions, thereby
boosting our forecasting performance.

6 CONCLUSION

In this work, we study an under-explored topic in the recommenda-
tion regime: the trend recommender. Since limited previous works
have been done on this topic, we start by formally defining the
notion of ‘trend’ within the recommendation context. We then
recognize a bias-variance tradeoff hindering the model’s ability
to identify the trend in a timely and stable manner. This tradeoff
comprises variance resulting from data sparsity, and bias emerging
from temporal drift. Based on this observation, we formulate the
trend recommendation task as a one-step time series forecasting
problem. In terms of methodology, we develop a principled two-
phase model, dubbed TrendRec, which harnesses the user-item
interactive signals to uncover the underlying correlations across
items and ingests such knowledge to facilitate the trend forecast-
ing. We further establish corresponding evaluation protocols for
trend recommendation. Extensive experiments on datasets from
various domains including retail, media, and news demonstrate the
effectiveness of our proposed TrendRec.
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A SOLUTIONS TO PRACTICAL CHALLENGES

To address the challenges identified in Sec. 3.5, i.e., skewed data
and short active period, along with additional empirical problems,
we design the following mechanisms in featurization, training, and
inference:

A.1 Featurization

• Dynamic Filter: To alleviate the problem of skewed data, we
examine acceleration patterns of each item and select top [% of
items that exhibit the most significant changes in acceleration.
Here [ is a tunable hyperparameter. We quantify the dynamics
of acceleration for an item 𝑗 based on the metricD𝑗 =

∑𝑇
𝑡 |A𝑗𝑡 |.

Note that this mechanism is closely aligned with the objective
of trend recommendation, which is to correctly predict top-𝑘
trending items instead of accurately forecasting the accelera-
tions of all items at the next time step.

A.2 Training

• TrainingMasks: Due to the problem of short active period, the
time series of selected items (i.e., items chosen by the dynamic
filter) can remain sparse. To prevent the model from overfitting
zeros, we employ training masks which instruct the model to
disregard zeros during training and only update gradients based
on non-zero values.

• Different Context Windows for Different Domains: The
context window is a hyperparameter of time series forecasting
models which specifies the number of past time steps the model
should take into account. Depending on the domain, such as
media and retail with longer active periods for items or news
with shorter item lifecycles, the context window size is adjusted.
For example, a larger context window of 30 time steps may be
used for the media and retail domains, while a smaller context
window of 2 time steps may be used for the news domain.

• Training on Velocity: To ensure training stability, we choose
to train the time series forecasting model using velocity time
series instead of more dynamic acceleration time series. Em-
pirically, we discovered that the time series forecasting model
trained on velocity time series achieved better performance.

A.3 Inference

• Candidate Filter: To guarantee the quality of recommenda-
tions, we apply a velocity filter to select the top 𝛾% of items
as candidates for the acceleration prediction of the time series
forecasting model. This filter is based on the velocity of the item
at the current time step, and the value of 𝛾 is a hyperparameter
that depends on the dataset.

• Active Filter: We exclude the items with zero velocity at the
current time step from the candidate list. This is mostly useful
for items in the news domain due to short active period.

Both filtering mechanisms reduce the number of candidates prior
to the time series forecasting model’s inference, with the goal of
improving forecasting accuracy and reducing inference latency.
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