
2023 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2023, ROME, ITALY

LOW-COMPLEXITY STREAMING SPEECH SUPER-RESOLUTION

Erfan Soltanmohammadi, Paris Smaragdis, and Michael M. Goodwin

Amazon Web Services, Inc.

ABSTRACT
Speech super-resolution is the process of estimating the missing
frequency content of a speech signal from its existing band-limited
frequency content. The loss of frequency components is a common
occurrence that can be because of a low sampling rate, low-quality
microphones, or various transmission factors, and it is an increasingly
common problem as bandwidth for high-quality communications
is generally available, but many end devices are still using older
standards and protocols. Although a number of solutions exist for
this problem, we note that most are not amenable to real-world use,
due to computational or algorithmic constraints. In this paper we
present a compact, efficient, and minimal-latency solution to speech
super-resolution that is suitable for use with real-time streaming data.
We propose a novel causal architecture that can be easily deployed for
real-world use. We additionally propose a novel adversarial training
process and an initialization procedure that speeds up convergence
and results in improved outputs. Objective and subjective results
show that our proposed model outperforms the latest solutions in this
space, despite being significantly smaller and faster.

Index Terms— speech super-resolution, bandwidth extension,
speech synthesis

1. INTRODUCTION

The frequency content of telephony speech, as standardized, is limited
between 300Hz and 3.4kHz. This small bandwidth of 3.1kHz is
enough for humans to understand the speech. However, the speech
signal with this bandwidth lacks fidelity and can cause listener fatigue
[1].

Modern voice communications are now increasingly relying on
internet networking, which can provide a higher bandwidth and af-
ford a much better audio quality. However, since many users are
connecting through telephony devices or call in through telephone
networks, we often encounter callers with low-quality signals. Since
increased bandwidth is not a limiting factor anymore, this situation
can be improved with the use of speech super-resolution algorithms
that can improve the audio quality of telephony callers when they
connect to voice-over-IP calls. The necessary processing would es-
timate the low and high frequency contents that are missing in the
telephony speech signal as illustrated in Fig. 1.

Although this is an old problem and there have been many band-
width expansion algorithms presented in the context of signal process-
ing, in recent years, there have been multiple proposed algorithms
that produced superior results by making use of neural networks. In-
spired by deep learning-based image super-resolution algorithms [2],
Kuleshov et al. [3] propose a feedforward convolutional architecture
called AudioUnet for bandwidth extension. They this architecture as
an end-to-end task, and view the task as finding a map from one time
series, which is the low bandwidth audio signal, into another time
series, which is the high bandwidth audio signal.

0 1 2 3
Time (sec)

100

500

1000

2000

4000

8000

Fr
eq

ue
nc

y
(H

z)

Bandlimited speech

0 1 2 3
Time (sec)

Wideband speech

Fig. 1. Examples of band-limited and full-band speech. On the left
we see a telephone voice recording, which is clearly missing content
in the low and high frequencies. On the right, the same utterance in
full bandwidth exhibits more signal content throughout the available
frequency range. Our goal is to automatically recover the missing
frequencies on the left. Note that the y axis is log-warped for legibility
in the low frequencies, which under-represents the amount of missing
frequency content which is more than half of the available bandwidth.

Motivated by the success of adversarial training in image super-
resolution, Eskimez et al. propose and algorithm called MuGAN
which uses an adversarial loss along with a log-power spectrograms
loss in their deep neural network-based solution for extending the
bandwidth of speech in narrowband 4kHz bandwidth signals to wide-
band 8kHz signals [4, 5].

Another generative adversarial network (GAN) based solution
is proposed in [6]. In this method, the magnitudes of the high fre-
quency components are estimated using a GAN architecture and the
corresponding phase information is estimated using a MelGAN based
vocoder [7].

Zhang et al. are first to use normalized flow structure [8] for the
audio super-resolution algorithm called WSRGlow [9]. The network
of WSRGlow operates on the short time Fourier transform of the
input signal which allows the model to exploit both time domain
and frequency domain information. These two factors accelerate the
training and improve the performance of the model.

In [10], the authors propose using a diffusion probabilistic model
[11] based on neural vocoders for bandwidth extension. The model is
called NU-Wave and can generate natural sibilants and fricatives but
does not perform well on generating harmonics of vowels. To solve
this main failure of NU-Wave in generating harmonics, the authors in
[12] propose NU-Wave 2 which uses short-time Fourier convolution
with bandwidth spectral features to generate harmonics.

Similar to GAN-based vocoders [13], the authors in [14] propose
NVSR which is a two-stage speech super-resolution architecture
trained with an adversarial loss. In the approach high-resolution
speech signals are constructed from the predicted high-resolution

979-8-3503-2411-2/23/$31.00 ©2023 IEEE

Mel-spectrograms. They use multi-resolution losses in the time and
frequency domains which allows high quality reconstruction.

Despite the high-quality results of the aforementioned algorithms,
their computational complexity is high enough that it makes them
prohibitive for real-world deployment. Additionally, most often such
models operate in a non-causal manner which limits their use for
streaming data inference. As a result, in the context of real-life com-
munications, these approaches are not providing a practical solution.

In this paper, we propose a super-resolution algorithm which
provides improved output quality with a much smaller computational
footprint and using causal-only operations, so it can be applicable
to real-time applications. Along with extending the bandwidth, our
proposed algorithm additionally compensates for the degradation that
the low-quality microphones of many phones impose to the speech
signal by reconstructing the low frequency missing components and
equalizing the signal back to the original signal spectrum. Moreover,
our algorithm also corrects quantization errors that are present in
modern telephony pipelines. For example, the narrowband audio
codec G.711 quantizes the audio signal with 8-bit resolution [15],
which introduces some quantization noise. Our solution improves
the bit resolution by reconstructing a floating-point signal that can be
subsequently sampled at any desired bit depth.

2. PROPOSED MODEL

In this section we describe the model we developed. The goals of
this design were to enable a compact, fast, causal, and low-latency
model that can be deployed on streaming audio data. Some of the
design decisions needed were obvious, e.g. we could only use causal
convolutions, but others were more involved. In the following sections
we outline the model structure and highlight the design decisions and
trade-offs that we made. The proposed model consists of a cascade
of units as shown in Fig. 2. Processing is sandwiched between
an encoder-decoder pair, and most of the hard work is done by a
repeating set of novel modules (MLPStreams) that operate in a higher-
dimensional latent space.

En
co

de
r

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

De
co

de
r

M
LP

St

re
am

sIn
pu

t
au

di
o

Co
de

Co
de

Ou
tp

ut

au
di

o

La
te

nt

La
te

nt

Fig. 2. The overall architecture of the proposed model

2.1. Encoder

This unit is responsible for transforming the very-correlated time do-
main samples into a higher dimensional representation with reduced
temporal dependencies. There are a number of transforms, learned
or fixed, that we use at this step. Perhaps the most obvious choice
is the Short Time Fourier transform (STFT). It has the advantage of
being well-understood and, by adjusting it’s size and hop, can be ap-
propriately adjusted to suit the input signal’s characteristics in terms
of harmonic and temporal content, while simultaneously balancing
latency constraints. Although this can be an obvious choice for the
encoder-decoder design, we are not making use of it as is.

The STFT does create a projection to a complex-valued space,
which has significant downside; processing complex-valued data is
not as straightforward and the advantages of learning in that space,

as opposed to a real-only space, is still a hotly debated subject. In
our experiments, we did not observe any advantage to using complex
numbers, both from an optimization perspective (we could not achieve
better results), but also from a computational perspective (complex
number operations are currently not as well optimized as real-valued
processing in most frameworks). Real-valued alternatives to the
STFT would be the Modified Discrete Cosine Transform (MDCT),
which exhibits similar properties as the STFT, but remains in the real
number domain, or the Short Time Hartley Transform (STHT), which
is a modified version of the STFT that uses the Hartley transform
(essentially a real-valued version of the DFT).

Of course, at a high level most of these transforms are related
to each other via simple transformations and would be expected to
produce similar results. In our experiments we found that, by a
small margin, the best performing solution was to concatenate the
real and imaginary parts of a unitary DFT transform. Since this
was the most performant solution in terms of implementation we
used that for our experiments below. We can still achieve somewhat
better performance, if we were to use a learned filterbank instead,
however that comes at the expense of increased computation and a
more difficult training process.

2.2. Projection to latent space

The aim of this unit is to transform the encoder’s output to an abstract
multi-dimensional space where the necessary processing will take
space. To achieve this goal, we use a simple projection to the desired
dimensionality, through a linear projection followed by a Parametric
Rectified Linear Unit (PReLU) non-linearity [16]. This projection
is not necessary if one wishes to perform processing directly on the
encoder domain. In the case of using fixed transforms such as the
DFT however, it is often advantageous to project to a different space
that will not be constrained by the transform size (which is almost
always tied to be the same as the input audio frame size). If one were
to use a learned filterbank in the encoder, then this step would not be
necessary since this projection could be incorporated in the learned
transform.

2.3. MLPStreams

The main part of the processing is done by a sequence of repeating
modules that operate in the latent space. We call these sub-units
Multi-Layer Perceptron Streams (MLPStreams) and their structure is
outlined in Fig. 3. The main goal in developing this type of unit in this
work was to avoid the use of computationally demanding elements,
such as full convolutions or transformers, while still maintaining a
wide receptive field. The design of this unit is based on the idea of
the ResMLP layer as presented in [17]. There are two main blocks,
one processing the two-dimensional input in the left-right dimension
(time), and the other in the up-down dimension (channels). In both
steps, this processing is done independently in each column/row, but
the interleaving of these two steps allows us to ultimately jointly
transform both dimensions. Another important element in this archi-
tecture is the affine transform unit. These units implement a simple
operation on their input, independently scaling and translating each
dimension with learned parameters.

Now let us look inside the two parts of the MLPStream unit in
more detail. First comes the temporal processing unit, that simply
takes linear combinations of consecutive time samples of the inputs
independently in each channel (i.e. operates in the left-right dimen-
sion only). This is done by employing a depth-wise 1D convolution
layer, which for our purposes is using causal convolutions so that it

En
co

de
r

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

De
co

de
r

M
LP

St

re
am

sIn
pu

t
au

di
o

Co
de

Co
de

Ou
tp

ut

au
di

o

La
te

nt

La
te

nt

Channel-oriented processing (up-down)

76

Input stream

Time→

C
ha

nn
el

s→

Affi
ne

Affi
ne

De
pt

h-
wi

se

Co
nv

1D

Affi
ne

Affi
ne

PR
eL

U

Co
nv

1x
1

Co
nv

1x
1

Time-oriented processing (left-right)

Output

stream

Skip connection

Skip

connection

Fig. 3. The internal sub-units of the MLPStreams. Note that process-
ing happens independently across channels and across time steps. By
interleaving these two orientations we get to take all data into account
with a significantly reduced amount of processing as compared to
alternatives.

can be applied in real-time without latency. As compared to a more
conventional 1D convolution layer, a depth-wise convolution does not
apply multiple filters on all channels, instead convolving each channel
independently with its own filter. By doing so it reduces the amount of
computations and memory requirements considerably. We do not use
a bias term for this convolution operation. Preceding and following
this convolution are two affine transform layers. Although on paper
these might seem redundant since their effect can be subsumed in the
convolution operation, they serve an important role by independently
conditioning the data for the layers that follow them. In a more tra-
ditional network architecture, these would have been normalization
layers. However, due to the causality and computational constraints
that we strive to satisfy, such an operation would not be usable as we
would need to look into future time samples to properly normalize,
or design an online normalization scheme, which itself would be
significant added complexity. As in [17], the simplified processing
and the strategic placing of affine transforms lets us bypass the need
for any normalization layers, making our approach a viable option for
deployment in real-time situations. Additionally, at inference time,
the affine layers can be collapsed into the depth-wise convolution,
which reduces the necessary computations by a significant amount.
Finally, there is a skip connection that bypasses these layers and is
averaged with their output. This additional pathway helps us better
propagate gradients all the way to the start of the network.

The second part of the MLPStream is a collection of units that
operates in the up-down dimension (i.e. over the channels). This has
a similar structure as the first part, with affine transforms as the start
and end, and a skip connection. Instead of the depth-wise convolu-
tion, which combined time samples, we now use the so-called 1x1
convolutions, which are essentially linear transforms across the input
channels (but not across time). By doing so we give our network the
ability to combine multiple latent dimensions, something that was
not feasible in the preceding part. Just as with the depth-wise convo-
lution, by not considering one of the two dimensions the amount of
computations is significantly reduced. We use two of these 1x1 con-
volutions with no bias terms, and between them we include a PReLU
activation function. Just as before, the skip connection averages the

input and output of this segment. Just as before, at inference time, the
affine transforms can be subsumed by the convolution layers, further
reducing necessary computations.

In the full network, we use multiple of these MLStream units
in succession. This allows us to create a larger temporal receptive
field by compounding their convolutions, and it gives the network a
chance to constantly switch the orientation on which it processes the
data, thereby combining temporal and channel processing.

2.4. Projection to encoder space and decoding

Once processing is completed by the MLPStreams we go through a
process where we undo the processing steps that brought us to the
latent space. We use a postprocessing projection that helps us change
the dimensionality of our latent space to that of the encoder space,
thereby making our data suitable to put into the decoder. In the case
where we employ a learned filterbank in the encoder and a projection
to the latent space was not used, we similarly do not need to use
this layer since the MLPStream outputs will already be in a suitable
format to present to the decoder.

Finally, the decoder does the inverse operation of the encoder.
For example, if the encoder is the STFT, then the decoder would be
the inverse STFT. If the encoder is a convolutional layer, then we use
another convolutional layer as the decoder. Once through the decoder
the data will be in the waveform domain.

2.5. Model initialization

As with all neural net models, proper initialization can help speed up
and improve training. In this particular case, there are some tricks
we can use to ensure that we do not waste training iterations unnec-
essarily. As we will describe in more detail later, during training the
network will be given bandlimited audio inputs and will be asked to
produce the corresponding fullband audio output. Starting training
with randomly initialized layers will require a considerable amount
of training iterations until the network will be able to produce plau-
sible sound outputs. Instead we make the observation that had the
network simply produced the input as the output (i.e. it started as an
identity function), it would already be at a local optimum. It wouldn’t
necessarily complete the desired enhancement task, but it would be
properly calibrated to produce a properly scaled output that has at
least some of the desired information. In effect, identify mapping will
be a reasonable local optimum, certainly much better than a random
network. Armed with this observation we note that all of the network
components above have been designed so that they become identity
functions.

For example, the encoder/decoder can be chosen to be the inverse
of each other (e.g. a STFT/inverse STFT pair of transforms). The
projection to the latent space, which is often of more dimensions that
the encoder space, can be a padded identity matrix (and likewise, the
projection back to the encoder space can simply invert that). Inside
the MLPStream units, we initialize the affinity transforms to scale
each dimension by 1 and translate it by 0, set all the convolutions to
be an identity function, and set the parameter of the PReLU to be 1,
which will effectively make it an identity function as well. Note that
for our skip connections, we average the two converging paths, so that
there is no extra scaling taking place. Since all of these operations are
now identity functions, we know that we can initialize the network
starting from a good initial condition. Doing so results in signifi-
cantly accelerated training as compared to random initial conditions.
Compared to Kaiming uniform initialization, which is the next best
option that we found, identity initialization decreases training loss

by 3% on average after convergence is ultimately achieved. Identity
initialization additionally speeds up convergence, reaching Kaiming’s
overall minimum loss in 60% fewer epochs..

2.6. Deploying as a streaming model

As defined, our model is causal and has minimal latency. Training is
done offline to take advantage of batching and pipelining speedups,
but we deploy it as a streaming model. To do so we use buffers to
ensure convolution continuity across input frames. This does not add
a notable amount of additional computation, but it will add some
latency since in order to obtain a single filterbank frame we need to
wait to have enough samples. Consequently in a typical deployment
our algorithm has a latency of 120 samples (the size of the filterbank
frame minus the hop size), which is 7.5ms.

2.7. Losses

During the training, the total loss that we use is a weighted sum of
three different losses. In this section we explain each of them.

2.7.1. Time domain loss

The first loss we use is computed in the time domain and measures
how similar each input is to the desired output. We measure that loss
over a range of window frame sizes similar to [18]. For each frame
size we calculate the average value in that frame and obtain the ℓ1-
norm between the input and output waveforms. We use the average
loss from multiple frame sizes, and we always also use a frame size
of 1, which of course becomes just the ℓ1-norm between the input
and output waveforms. We further calculate ℓ1-norm of difference
between the first order derivative of energy of the two signals in
each segment. This would gives us a loss on the instantaneous phase.
The average of these losses would be the loss measured on the time
domain.

2.7.2. Frequency domain loss

To calculate the frequency domain loss, we find the difference be-
tween the decibel magnitude of the STFT of the target signal and
the model’s output in ℓ1-norm. We additionally add pre-emphasis
on the STFTs so that we can highlight the differences in the higher
frequencies better. We calculate this loss for the STFTs using multi-
ple window sizes. The average of these losses would be used as the
first component of the frequency domain losses. Next, we calculate
ℓ1-norm of the difference between the Mel-spectrograms of the tar-
get signal and the model’s output. Then, the frequency domain loss
would be the average of these values.

2.7.3. Adversarial loss

After the model is fully trained based on the previous two losses, we
add an additional adversarial loss based on a multi-period discrim-
inator [13]. Using this extra term helps us to fine-tune the network
and noticeably improves the quality of the output once the other two
losses have converged.

3. RESULTS

In this section, throughout a set of experiments we evaluate the per-
formance of the proposed model and compare it with the state-of-art
models.

3.1. Settings

To train our model, we set the model parameters as follows. For the
encoder, we use the STFT with the square root Hanning window so
that we can ensure perfect reconstruction. We use the window size
of 160 samples and hop size of 40 samples which, when used in
streaming mode, imposes a delay of 7.5ms. We concatenate the real
and imaginary parts of the STFT, except for the imaginary values of
the DC and Nyquist which are zero. This results in a 160-dimensional
representation in the encoder space. We set the size of the latent
space to 512, and we use 12 MLPStream units in series. The length
of the depth-wise filter in each MLStream unit is set to 5 taps. For
the time domain loss, we use the set of {1, 240, 480, 960} samples as
the time frame lengths. We use an overlap of 50% of frame length for
the segments greater than 1. For the frequency loss, we use the set of
{2048, 1024, 512, 256, 128, 64} as the window size of the employed
STFTs and set the overlap size to 75% of the window size. We set
the weight of the frequency loss to be twice that of the time domain
loss, since it captures the high-frequency differences better than the
time domain loss.

We use 65,536-sample long audio segments for training. This
would be equivalent to 4.096 seconds at 16kHz sampling rate. We use
a batch size of 16. We noticed that the larger batch sizes would result
in slower training and a degraded output. For training the network
we use the Adam optimizer with β1 = 0.9 and β2 = 0.999. We set
the initial learning rate to 0.005 which we then drop by a factor of 10
every 500 epochs. We add the adversarial loss after 1,500 epochs.

For training, we use more than 40 hours of clean recordings
of speech signals from the VCTK corpus [19]. We resample the
recordings to 16kHz, and use them directly as the wideband target
signals during the training. To create the input narrowband signals,
we downsample the original signals to 8kHz signals.

To reduce overfitting and improve generalization, we apply var-
ious data augmentation operations to the training dataset. The set
of operations consists of applying random gain, imposing saturation,
applying a noise gate, adding pink noise, and filtering the input signal
using high-pass filters with random cutoff frequencies to emulate
poor frequency response microphones. We additionally quantize the
signals with varying bit resolutions to simulate quantization noise and
cover artifacts from common speech codecs and encoding formats.

In the next sections, we summarize the performance evaluation
and the comparison of our model to the latest methods proposed for
speech super-resolution. For all other methods in this section use the
pre-trained models on the VCTK corpus.

3.2. Complexity and size

We first compare the complexities of models that have been recently
proposed for bandwidth expansion. These include AudioUnet [3],
WSRGlow [9], NU-Wave 2 [12], and NVSR [14]. We use the number
of parameters when comparing the size of the models which directly
translates to the amount of memory that they require in practice. The
comparison is shown in Table 1. Our model is the second smallest
model in this list. We then compare the computational complexity of
these models. For this comparison, we use the number of required
floating-point operations per second of audio (FLOP/s) during infer-
ence. Our model significantly outperforms the others, requiring 10
times fewer FLOP/s during inference compared to the next fastest
model, and about 360 times fewer FLOP/s than the slowest one.

3.3. Audio Quality

Of course, computational considerations are important when it comes
to a real-time deployment of such a model, but the ability to re-
cover lost information is of utmost importance. We measure the

Parameters
(Millions) TFLOP/s

AudioUnet 70.9 4.7

WSRGlow 229.9 1.08

NU-Wave2 1.7 1.06

NVSR 99.0 0.13

Ours 6.5 0.013

Table 1. Comparison of the size of the models based on the number
of parameters in millions and their computational requirements in
TeraFLOPs per second of audio processed.

performance of our model1 as compared to a number of competing
algorithms. We do so using both objective and subjective metrics.

3.3.1. Objective evaluation

For the objective evaluation, we report the average of various mea-
sures on a test set of 2 hours of speech recordings from the Lib-
riSpeech corpus [20]. It includes 1,757 utterances, each of length
4.096 seconds. As the first objective performance metric, we use the
log-spectral distance (LSD) [21] which is defined by

LSD(x, x̂) ≜
1

L

L−1∑
l=0

√√√√ 1

K

K−1∑
k=0

(
log10

|X[k, l]|2 + ϵ

|X̂[k, l]|2 + ϵ

)2

(1)

where x is the target signal, x̂ is the model predicted signal, L is
number of time blocks, l is the time block index, K is the number of
frequency bins, k is the frequency bin, X is the STFT representation
of x, X̂ is the STFT of x̂, | · | denotes the magnitude of a complex
number, and ϵ is a small number for numerical stability. Table 2
shows the LSD values of different methods. Lower values are better,
with a theoretical lower bound at 0. As shown, our model outperforms
all other models by a significant margin.

Next, we compare these models based on the Perceptual Evalu-
ation of Speech Quality (PESQ) metric [22]. This is a routine that
simulates human listener opinions in a scale of -0.5 to 4.5, with a
score of 4.5 being the best. We use the PESQ score between the mod-
els’ outputs and the ground truth signals. That result is also shown in
Table 2, where once again our model obtains the highest score.

At this point we need to note that our model, not being a gen-
erative model, does not generate a speech output from scratch, but
instead augments the input with a plausible set of missing frequency
components (or other enhancements as asked to). In comparison,
some of the generative models we show here generate from scratch
a speech signal conditioned on the bandlimited input. This means
that they are not as well positioned to perform well with objective
measures that operate on the signal level. This is because they are
not striving for waveform accuracy at the sample level, but instead
they strive for a high likelihood that the output is a plausible speech
signal. They will sound good, but not necessarily keep all of the
signal elements of the input signal.

3.3.2. Subjective evaluation

To measure the subjective quality of the outputs of the models, we
use result of a Mean Opinion Score (MOS) experiment obtained by
the crowdsourcing methodology as described in P.808 [23]. This

1The offline and streaming modes are numerically identical for our model,
we are therefore presenting streaming results in the paper.

test will be a better approximation of how a human listener would
rate these algorithms, and additionally sidesteps the generative model
issues that we outlined above. We use 50 recordings randomly chosen
from the test dataset. The outputs of each model are evaluated by 20
independent listeners. The average MOS score on all of the samples
for each model is also shown in Table 2. MOS values range from 1
to 5, with 5 being the best rated score. Our proposed method once
again achieves the highest score at 3.88 which shows it produces
high-fidelity outputs even in perceptual evaluations that don’t take
signal details into account.

LSD PESQ MOS

AudioUnet 1.68 2.05 3.65

WSRGlow 1.15 2.68 3.06

NU-Wave2 1.44 2.83 3.35

NVSR 1.13 2.78 3.75

Ours 0.85 3.68 3.88

Table 2. Comparison of reconstruction quality using objective tests
LSD and PESQ, as well as a subjective test based on Mean Opinion
Score (MOS).

Finally, to evaluate the effect of adversarial loss in the perfor-
mance, we ran an ablation experiment. We trained our model without
adversarial loss and evaluated the MOS score on the same test dataset.
We received a lower MOS score of 3.78. This implies that the adver-
sarial loss helps to improve the performance by 2.7% (0.1 points).

4. CONCLUSIONS

In this paper, we presented a new model for speech super-resolution.
In addition to estimating missing high-frequency content, the pro-
posed method also reconstructs missing low-frequency content, and
can additionally correct issues with signal quantization, level imbal-
ances, etc. Unlike previous approaches, we focused on a design that
would satisfy the demanding constraints that a real-time deployment
would necessitate.

Our model is small, computationally very efficient, is causal, and
has minimal latency, and despite these constraints it still produces
superior quality outputs as compared to competing models that are
unsuitable for real-world use. As such, it can be easily deployed
on-device for call enhancement, but can also run more efficiently on a
server managing more simultaneous calls than alternative approaches.
Although we did not talk about this here, it is possible to further
simplify this model by making use of weight quantization, model
compression, and other inference optimization techniques, which can
produce a significantly reduced computational footprint. Due to the
simple nature of this model these are easy and safe to apply, and
result in efficiency that makes this model appropriate for embedded
devices too.

Finally, although in this paper we focused on the specific applica-
tion of super-resolution, we note that the architecture and techniques
that we introduced are general enough that they can be used for other
audio processing tasks as well (e.g. general audio enhancement,
source separation, etc). We hope that by introducing this model we
can nudge research efforts towards solutions that are suitable for
deployment in real-world real-time use.

5. REFERENCES

[1] Jan-Niklas Antons, Robert Schleicher, Sebastian Arndt, Se-
bastian Möller, and Gabriel Curio, “Too tired for calling? a
physiological measure of fatigue caused by bandwidth limita-
tions,” in 2012 Fourth International Workshop on Quality of
Multimedia Experience, 2012, pp. 63–67.

[2] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang,
“Image super-resolution using deep convolutional networks,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 38, no. 2, pp. 295–307, 2015.

[3] Volodymyr Kuleshov, S Zayd Enam, and Stefano Ermon, “Au-
dio super-resolution using neural nets,” in ICLR 2017 - Work-
shop of International Conference on Learning Representations,
2017.

[4] Sefik Emre Eskimez and Kazuhito Koishida, “Speech super
resolution generative adversarial network,” in ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 3717–3721.

[5] Sefik Emre Eskimez, Kazuhito Koishida, and Zhiyao Duan,
“Adversarial training for speech super-resolution,” IEEE Journal
of Selected Topics in Signal Processing, vol. 13, no. 2, pp. 347–
358, 2019.

[6] Shichao Hu, Bin Zhang, Beici Liang, Ethan Zhao, and Simon
Lui, “Phase-aware music super-resolution using generative
adversarial networks,” in Interspeech, 21th Annual Conference
of the International Speech Communication Association, 2020,
pp. 4074–4078.

[7] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas
Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson,
Yoshua Bengio, and Aaron C Courville, “Melgan: Genera-
tive adversarial networks for conditional waveform synthesis,”
in Advances in Neural Information Processing Systems. 2019,
vol. 32, p. 14881–14892, Curran Associates, Inc.

[8] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker, “Nor-
malizing flows: An introduction and review of current methods,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 43, no. 11, pp. 3964–3979, 2020.

[9] Kexun Zhang, Yi Ren, Changliang Xu, and Zhou Zhao, “WSR-
Glow: A Glow-Based Waveform Generative Model for Audio
Super-Resolution,” in Interspeech, 21st Annual Conference of
the International Speech Communication Association, 2021, pp.
1649–1653.

[10] Junhyeok Lee and Seungu Han, “Nu-wave: A diffusion prob-
abilistic model for neural audio upsampling,” in Interspeech,
22nd Annual Conference of the International Speech Communi-
cation Association, 2021, pp. 1634–1638.

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel, “Denoising diffu-
sion probabilistic models,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, Eds., 2020, vol. 33, pp. 6840–6851.

[12] Seungu Han and Junhyeok Lee, “Nu-wave 2: A general neural
audio upsampling model for various sampling rates,” in Inter-
speech, 23rd Annual Conference of the International Speech
Communication Association, 2022.

[13] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae, “Hifi-gan:
Generative adversarial networks for efficient and high fidelity

speech synthesis,” in Advances in Neural Information Pro-
cessing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, Eds. 2020, vol. 33, pp. 17022–17033, Cur-
ran Associates, Inc.

[14] Haohe Liu, Woosung Choi, Xubo Liu, Qiuqiang Kong, Qiao
Tian, and DeLiang Wang, “Neural vocoder is all you need for
speech super-resolution,” in Interspeech, 23rd Annual Confer-
ence of the International Speech Communication Association,
2022.

[15] “G.711 : Pulse code modulation (PCM) of voice frequencies,”
in The ITU Telecommunication Standardization Sector (ITU-T),
Archived from the original on 2019-06-17. Retrieved 2019-11-
11., https://www.itu.int/rec/T-REC-G.711.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–
1034.

[17] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izacard,
Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.,
“Resmlp: Feedforward networks for image classification with
data-efficient training,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[18] Haohe Liu, Qiuqiang Kong, Qiao Tian, Yan Zhao, DeLiang
Wang, Chuanzeng Huang, and Yuxuan Wang, “Voicefixer:
Toward general speech restoration with neural vocoder,” 2021.

[19] Junichi Yamagishi, Christophe Veaux, and Kirsten MacDonald,
“CSTR VCTK Corpus: English multi-speaker corpus for CSTR
voice cloning toolkit (version 0.92) [sound]. University of Edin-
burgh. The Centre for Speech Technology Research (CSTR),”
2019, https://doi.org/10.7488/ds/2645.

[20] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: An asr corpus based on public do-
main audio books,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.
5206–5210.

[21] Lawrence Rabiner and Biing-Hwang Juang, Fundamentals of
speech recognition, Prentice-Hall, Inc., 1993.

[22] “ITU-T, P.862: Perceptual evaluation of speech quality (PESQ):
An objective method for end-to-end speech quality assessment
of narrow-band telephone networks and speech codecs,” 2001.

[23] ITU-T, “Recommendation p.808: Subjective evaluation of
speech quality with a crowdsourcing approach,” 2018.

