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ABSTRACT

State-of-the-art video contrastive learning methods spatiotemporally augment two
clips from the same video as positives. By only sampling positive clips from the
same video, these methods neglect other semantically related videos that can also
be useful. To address this limitation, we leverage nearest-neighbor videos from
the global space as additional positives, thus improving diversity and introduc-
ing a more relaxed notion of similarity that extends beyond video and even class
boundaries. Our ”Inter-Intra Video Contrastive Learning” (IIVCL) improves per-
formance and generalization on video classification, detection, and retrieval tasks.

1 INTRODUCTION

Recently, contrastive learning works for video such as CVRL (Qian et al., 2021) and ρ-MoCo (Fe-
ichtenhofer et al., 2021) are competitive with supervised learning. These works learn a representa-
tion from unlabeled data by pulling positive pairs closer and pushing negative samples apart in the
embedding space. For video, these positive pairs are generated through random augmentations of
sub-clips from the same video, while clips from other similar videos are never used as positives.

By only considering clips that belong to the same video to be positive, works such as CVRL and
ρ-MoCo neglect other semantically related videos that may also be useful and relevant as positives
for contrastive learning. For example, consider a positive pair of two skiing videos and a negative
snowboarding video. Snowboarding is semantically related but always will be negative, so this
similarity will never be leveraged as an additional signal to the skiing-skiing positive pair.

This raises the question of what constitutes a desirable video representation; by focusing too much
on local intra-video semantics, we may miss the larger picture and hierarchy of visual concepts. This
might lead to overfitting to tasks that are similar to the pretraining dataset and thus hurt generaliza-
tion. On the other hand, if we focus too much on global inter-video semantics, we may lose sight
of granular details that are also important for video understanding. To balance the two, we propose
learning notions of similarity both within the same video and between different videos, by leveraging
inter-video nearest-neighbor (NNs) from the global space in addition to existing intra-video clips as
diverse positive pairs for contrastive learning. Our method “Inter-Intra Video Contrastive Learning”
(IIVCL) defines a second positive key as the most similar video found from an evolving queue of
randomly sampled videos in the learned representation space. In summary, our contributions are:

(i) Going beyond single-video positives by leveraging globally sampled nearest-neighbors to in-
crease the semantic diversity of positive keys and introduce higher-level notions of similarity.

(ii) IIVCL, a simple yet effective self-supervised video contrastive learning algorithm that plugs into
existing work and jointly learns intra and inter-video similarity using only RGB and no clustering.

(iii) Balancing local and global similarity to improve performance on video action recognition, ac-
tion detection, and video retrieval — even in a few-shot learning setting.

2 RELATED WORK

Self-supervised image representation learning. The re-emergence of contrastive learning el-
evated self-supervised image representation learning as a viable alternative paradigm to fully-
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supervised learning (He et al., 2020; Chen et al., 2020c;a;b; Grill et al., 2020; Chen & He, 2021).
These methods encourage models to be invariant to multiple augmented views of the same image.

Some recent works such as Zhuang et al. (2019); Caron et al. (2020); Li et al. (2020) go beyond
single-instance contrastive learning by using clusters to find semantically relevant positive pairs. Our
work is similar to NNCLR (Dwibedi et al., 2021) which uses nearest-neighbors for image contrastive
learning, but differs in that we combine inter-video nearest-neighbors with intra-video positives for
video contrastive learning, which brings unique challenges due to the temporal dimension.

Self-supervised video representation learning. Several recent works have considered contrastive
learning for video. These methods differ in their definition of positives and negatives. Some works
use different subclips of equal-length from the same video as positive samples (Qian et al., 2021;
Feichtenhofer et al., 2021; Dave et al., 2021), or different frames from the same video (Tian et al.,
2020). Recasens et al. (2021) samples two subclips of different length from the same video to encour-
age generalization to broader context. Other works utilize optical flow in a cross-modal context; Han
et al. (2020b) uses optical flow to mine RGB images with similar motion cues as positives, while
other works do not mine positives but instead learn from the natural correspondence between optical
flow and RGB within the same video (Xiao et al., 2021), or the same frame (Tian et al., 2020).

In contrast, our work goes beyond local definitions of positives from a single-video and expands
to globally sampled nearest-neighbor videos, but without using optical flow nor separate training
phases like Han et al. (2020b). Unlike Chen et al. (2021a), our work uses the online representation
space to pick NNs on the fly instead of pre-computing video clusters. Unlike Chen et al. (2021a);
Morgado et al. (2021) which uses audio-visual correspondence, our work only uses RGB frames.

3 INTER-INTRA VIDEO CONTRASTIVE LEARNING

Intra-Video Contrastive Learning. We use the contrastive loss LNCE (Oord et al., 2018). Con-
trastive learning methods for video such as CVRL (Qian et al., 2021) and ρ-MoCo (Feichtenhofer
et al., 2021) use the embeddings of two subclips z1 and z2 from the same video as positives. Given
a queue Q of randomly sampled embeddings, the intra-video contrastive loss is then:

LIntra(z1, z2, Q) = LNCE(z1, z2, Q) (1)

Nearest-Neighbor Contrastive Learning. We maintain a queue Q that is updated with embeddings
from each forward pass, which allows us to directly compute cosine similarities between the input
video and queue. Given an embedded input video x and queue Q of randomly sampled embeddings
across the dataset, we use the nearest-neighbor of x as its positive:

NN(x,Q) = argmax
z∈Q

(x · z) (2)

Let z1 and z2 be the embeddings of two subclips from the same video. We use Q for both selecting
the NN as a positive key and providing negatives (excluding the NN). Using the nearest-neighbor
operation in Eq. 2 to select the positive key for z1 as NN(z2, Q), and removing it from Q to form
Q− = Q \ NN(z2, Q), we have the NN contrastive loss:

LNN(z1, z2, Q) = LNCE(z1,NN(z2, Q), Q−) (3)

Combined Intra and Inter Training Objective
The final training objective is λIntra · LIntra + λNN · LNN . See A.3 and A.4 for more details.

4 EXPERIMENTS

4.1 BASELINES

ρ-MoCo (Feichtenhofer et al., 2021) is a leading contrastive learning work that samples intra-video
clips. We primarily compare against ρ-MoCo for ρ=2 (two clips per video), pretrained for 200
epochs on unlabeled K400, and call this baseline ρ-MoCo. Feichtenhofer et al. (2021) does not test
ρ-MoCo on all downstream datasets, so we rerun all experiments for fair comparison. We distill the
effect of improved positive diversity and balanced global-local context on downstream performance.
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Pretrain Pretrain Pretrain
Method Date Backbone Data (duration) Epochs Input Size UCF HMDB K400
Supervised R3D-50 scratch 8 × 2242 68.8 22.7 74.7
DPC (Han et al., 2019) 2019 R2D-3D34 K400 (28d) 110 40 × 2242 75.7 35.7 -
DynamoNet (Diba et al., 2019) 2019 STCNet YT8M-1 (58d) - 32 × 1122 88.1 59.5 -
SpeedNet (Benaim et al., 2020) 2020 S3D-G K400 (28d) - 16 × 2242 81.1 48.8 -
MemDPC (Han et al., 2020a) 2020 R2D-3D34 K400 (28d) - 40 × 2242 86.1 54.5 -
VideoMoCo (Pan et al., 2021) 2021 R(2+1)D18 K400 (28d) 200 32 × 2242 78.7 49.2 -
TECVRL (Jenni & Jin, 2021) 2021 R3D-18 K400 (28d) 200 16 × 1282 87.1 63.6 -
IIVCL R3D-18 K400 (28d) 200 8 × 1282 89.4 60.2 59.2
VTHCL (Yang et al., 2020) 2020 R3D-50 K400 (28d) 200 8 × 2242 82.1 49.2 37.8
CVRL (Qian et al., 2021) 2020 R3D-50 K400 (28d) 1000 16 × 2242 92.2 66.7 66.1
ρ-MoCo† (Feichtenhofer et al., 2021) 2021 R3D-50 K400 (28d) 200 8 × 2242 91.1 65.3 65.4
IIVCL R3D-50 K400 (28d) 200 8 × 2242 92.6 65.8 65.7

Table 1: Comparison with state-of-the-art self-supervised approaches. Reported results are top-1 accuracy
under finetune protocol (UCF, HMDB) and linear protocol (K400). † refers to our reimplementation (Sec. 4.1).

Method Backbone Pretrain Data Top-1 Acc
Supervised (Feichtenhofer et al., 2019) R3D-50 K400 52.8
ρ-MoCo (Feichtenhofer et al., 2021) R3D-50 K400 53.6

IIVCL R3D-50 K400 53.8

Table 2: Action recognition on Something-Something. We finetune on SSv2 and report top-1 accuracy.

Method Pretrain Data Top-1 Acc
Supervised (Feichtenhofer et al., 2019) K400 21.9

CVRL (Qian et al., 2021) K400 16.3
ρ-MoCo (Feichtenhofer et al., 2021) K400 18.6

IIVCL K400 19.0

Table 3: Action detection on AVA. We finetune on AVA using a clip size of 8× 8 and report mAP@0.5 IOU.

4.2 ACTION RECOGNITION

Unless otherwise noted, we train IIVCL on unlabeled K400 (Kay et al., 2017) (240K videos)
for 200 epochs, then transfer to downstream tasks. We use two popular evaluation protocols for
self-supervised representations: (i) Linear evaluation freezes the backbone and trains a linear
classifier, and (ii) Finetuning trains the entire network end-to-end. We report top-1 accuracy
on UCF101 (Soomro et al., 2012), HMDB51 (Kuehne et al., 2011), and Something-Something
v2 (Goyal et al., 2017) with finetuning, and on Kinetics-400 with linear eval.

In Table 1, we compare IIVCL against state-of-the-art self-supervised methods that use only RGB
frames. Compared to the ρ-MoCo baseline, IIVCL outperforms by 1.5% on UCF, 0.5% on HMDB,
and 0.3% on K400. Consistent improvements show the effectiveness of adding nearest-neighbor
positives. To fairly compare against other works which use a smaller backbone, we also present
results for IIVCL trained with R18 backbone and input resolution of 128x128. We outperform all
methods in this setting including VideoMoco (Pan et al., 2021) which uses larger input resolution.

We further evaluate on Something-Something v2 (Goyal et al., 2017) (SSv2) which is a challenging
benchmark focused on understanding fine-grained motions. IIVCL slightly outperforms the ρ-MoCo
baseline, showing that our method can consistently generalize to different domains.

4.3 ACTION DETECTION ON AVA

To test whether our method can also generalize to new downstream tasks, we evaluate IIVCL on
action detection which not only requires classifying the action but also localizing the person per-
forming the action, using the AVA dataset (Gu et al., 2018). More details in A.5.2. IIVCL also out-
performs the ρ-MoCo baseline on action detection by 0.4%. IIVCL also outperforms CVRL (Qian
et al., 2021) despite CVRL being trained for 5x more epochs and using 2x more pretraining frames.

4.4 ABLATION: TASK GENERALIZATION OF INTRA AND NN WEIGHTS

In Table 6, we summarize the above results and also ablate our choice of λNN . Note that (λIntra=0.0,
λNN=1.0) corresponds to a pure NN sampling strategy that uses no intra-video pairs, aka a video-
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UCF Finetune K400 Linear
Method 1% 5% 20% 1% 10%

ρ-MoCo Feichtenhofer et al. (2021) 41.8 68.0 84.7 34.3 53.3
IIVCL 44.3 68.9 85.0 34.9 54.2

Table 4: Few-shot learning on UCF101 and K400. Rows indicate different pretrained models on K400.
Columns vary the % of UCF training data used for finetuning and % of K400 training data used for linear eval.

Epochs ρ UCF HMDB K400 SSv2
200 2 92.6 65.8 65.7 53.8
200 4 93.3 67.8 66.6 54.6
400 2 93.3 68.1 67.1 54.2

Table 5: More pretraining epochs and NNs. Data is unlabeled K400.

Action Recognition Action Detection
Model Finetune Linear Finetune Avg.

λIntra λNN UCF HMDB SSv2 K400 AVA Rank
1.0 0.0 91.1 (#3) 65.3 (#3) 53.6 (#2) 65.4 (#2) 18.6 (#2) 2.4
1.0 1.0 92.6 (#1) 65.8 (#2) 53.8 (#1) 65.7 (#1) 19.0 (#1) 1.2
0.0 1.0 91.2 (#2) 66.2 (#1) 53.2 (#3) 63.7 (#3) 18.4 (#3) 2.4

Table 6: Do NNs lead to better generalization? The first row corresponds to the ρ-MoCo baseline and second
row corresponds to IIVCL. All models are pretrained on K400 for 200 epochs. λIntra=0.0 means no intra-video
positives are used. We denote rank in blue parenthesis (where 1st = best) on each task.

UCF HMDB
Method Network Pretrain R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

SpeedNet Benaim et al. (2020) S3D-G K400 13.0 28.1 37.5 49.5
GDT Patrick et al. (2020) R(2+1)D K400 57.4 73.4 80.8 88.1 25.4 51.4 63.9 75.0
VCLR Kuang et al. (2021) R2D-50 K400 70.6 80.1 86.3 90.7 35.2 58.4 68.8 79.8

ρ-MoCo Feichtenhofer et al. (2021) R3D-50 K400 73.2 87.0 91.8 95.5 36.3 61.9 72.0 82.5
IIVCL R3D-50 K400 74.2 87.6 92.1 95.1 37.6 62.2 72.9 82.5

Table 7: Zero-shot video retrieval on UCF101 and HMDB. Recall @ topK for UCF and HMDB.

analog of NNCLR Dwibedi et al. (2021). We summarize the average rank per task for each configu-
ration. Pure NN sampling is surprisingly competitive with pure intra-video sampling on every task,
despite learning zero local semantics during SSL pretraining. However, combining the intra and NN
loss leads to the best performance with a small boost, supporting our intuition.

4.5 EFFECT OF MORE EPOCHS AND MORE NNS

Downstream accuracy increases with the number of temporal samples per video and pretraining
duration (Table 5). Performance does not seem to saturate.

4.6 FEW-SHOT LEARNING AND ZERO-SHOT VIDEO RETRIEVAL

We first compare against ρ-MoCo on UCF101 using finetuning when training data is limited to 1%,
5%, and 20%, and the evaluation set remains the same. We observe that IIVCL is more data efficient
across all three subsets. We then compare against ρ-MoCo on K400 using linear evaluation when
training data is limited to 1% and 10%, and the evaluation set remains the same. We observe similar
improvements across both subsets for IIVCL. For both UCF and K400, the delta between IIVCL
and ρ-MoCo is largest for the smallest training set of 1% data, indicating that nearest-neighbors are
particularly helpful for generalizing to few-shot setting. See Table 4.

We also evaluate on video retrieval where the extracted features are directly used to find the nearest-
neighbors. IIVCL outperforms ρ-MoCo for all but one recall threshold on UCF and all recall thresh-
olds on HMDB. This indicates that even without any downstream training, IIVCL is better able to
push similar videos of a different downstream dataset closer in the embedding space. See Table 7.

5 CONCLUSION

We presented IIVCL, which addresses limitations of existing contrastive learning works that sample
only intra-video positives by leveraging NN samples from a global neighborhood. IIVCL is simple,
improves performance on several video tasks, and can be directly plugged into existing work.

4



Published at the Workshop on Understanding Foundation Models at ICLR 2023

A APPENDIX

A.1 FIGURES

Video 1 Clip A

Video 1 Clip B

Video 2

repel
attract

Video 3
Video 1

Figure 1: Popular contrastive learning methods sample positive clips within the same video boundary, e.g.
clips A and B. However, other similar videos such as 3 are never used as positives, even if semantically similar.
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(a) Intra-video sampling.
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(b) Inter-video nearest-neighbor.
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Figure 2: IIVCL Overview. Fig. 2a shows intra-video positive sampling as used by state-of-the-art (Qian et al.,
2021; Feichtenhofer et al., 2021). Fig. 2b shows our proposal to leverage nearest-neighboring samples from an
evolving queue as positives. Fig. 2c is our IIVCL which combines a) and b) to learn similarity both within the
same video and between different videos. NN sampling is simple and directly plugs into existing methods.

A.2 ADDITIONAL METHODS: CONTRASTIVE LOSS

Contrastive learning maximizes the similarity of a given embedded sample q with its embedded
positive key k+, while minimizing similarity to negative embeddings ni. In the rest of this work,
we refer to (q, k+) as “positive pairs”. We utilize the InfoNCE loss (Oord et al., 2018) for self-
supervised video representation learning, which is given below:

LNCE(q, k+, N−) = −log
exp(sim(q, k+)/τ)∑

k∈{k+}∪N−
exp(sim(q, k)/τ)

(4)

where τ > 0 is a temperature hyper-parameter and sim(·) denotes the similarity function — which
in this work is the dot product (cosine) similarity between two ℓ2 normalized vectors: sim(q, k) =
q · k = qT k/(||q|| ||k||).

A.3 ADDITIONAL METHODS: MULTI-TASK OBJECTIVE

Combined Intra and Inter Training Objective
We use the same backbone but separate MLP projection heads to process the intra-video and NN
positive pairs. As each of these pretext tasks learns a different notion of similarity, we combine them
via a multi-task loss. We also maintain two separate queues of embeddings: QIntra and QNN. QNN is
used both to find the NN and provide negative keys (excluding the NN), while QIntra only provides
negative keys. We expand on these details in section A.4.

Specifically, let fq(·) and fk(·) be the encoder and its offline momentum-updated version, gIntra(·)
and gNN(·) be two separate MLP heads, and x1 and x2 be two subclips sampled from the same video.
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Video 1

Video 2

Video 3

Video 4

Video 5

(a) Intra-video sampling results in low diversity of
positive keys because subclips belong to the same
short video. Each row shows a different video.

Epoch 10

Epoch 50

Epoch 100

Nearest-Neighbors of query during pretraining

Epoch 0

Query

(b) For a query image (first row), the evolution of the
top-5 nearest-neighbors during SSL pretraining start-
ing from random initialization.

Figure 3: Intra-video vs. inter-video nearest-neighbor positives. In a), positive keys are always restricted to a
single video boundary, which limits diversity. In b), positive keys are sampled globally using similarity in the
learned feature space, which improves during pretraining. NNs do not necessarily belong to the same semantic
class as the query. This global notion of similarity improves generalization.

We first obtain the embeddings (zIntra
1 , zIntra

2 ) and (zNN
1 , zNN

2 ).

zIntra
1 = gIntra(fq(x1)); zIntra

2 = gIntra(fk(x2))

zNN
1 = gNN(fq(x1)); zNN

2 = gNN(fk(x2))

After obtaining the embeddings, we combine Eqs. 1 and 3 to get the final training objective. Note
that we use a symmetric loss but show only one side for simplicity. λIntra and λNN are tunable
parameters that control the contribution of each loss, which in our work is 1.0 for both. An ablation
for this is in Tab. 6.

L(zIntra
1 , zIntra

2 , zNN
1 , zNN

2 ) = λIntra · LIntra(z
Intra
1 , zIntra

2 , QIntra)

+ λNN · LNN(z
NN
1 , zNN

2 , QNN)
(5)

Note that class labels are not used and the model is free to learn its own notion of similarity. Over
the course of pretraining, the model becomes better at picking semantically similar nearest-neighbor
video clips while introducing additional diversity of positive samples that is not possible through
sampling intra-video clips, as shown in Fig. 3.

A.4 ADDITIONAL METHODS: PRETRAINING METHODOLOGY

A.4.1 MOMENTUM ENCODER AND QUEUE

We make several design choices that enable end-to-end learning from unlabeled videos using our
method. As contrastive learning requires large batch sizes (Chen et al., 2020a) and computing video
embeddings is expensive, we use a FIFO queue that is updated with embeddings from a momentum
encoder, similar to He et al. (2020); Chen et al. (2020c). The momentum encoder’s weights θk are
updated as a moving average of the encoder’s weights θq , with momentum coeff. m ∈ [0, 1), as
given by Eq. 6. Thus the momentum encoder receives no gradients.

θk ← mθk + (1−m)θq (6)

We share the same encoder but utilize separate MLP heads when processing intra-video and nearest-
neighbor positives. We also maintain two separate queues for each task. Note that the queue contains
approximate representations of a large subset of pretraining data in memory and is dynamically
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updated “for free” since we only use embeddings that are already computed during the forward
pass. Our method scales to large data and is more efficient than methods that utilize clustering such
as Caron et al. (2020); Li et al. (2020); Chen et al. (2021a); Patrick et al. (2020). Our method also
allows for more up-to-date representations than methods that use an offline positive set (Morgado
et al., 2021; Chen et al., 2021b).

A.4.2 IMPLEMENTATION DETAILS

Loss. The temperature τ = 0.1. λIntra = 1.0, λNN = 1.0.

Encoder. For all experiments, we use a ResNet3D-50 8x8 slow pathway from Feichtenhofer
et al. (2019) with He initialization (He et al., 2015), unless otherwise indicated. Outputs are taken
after the global average pooling layer to form a 2048-d embedding. Following Chen et al. (2020c);
Feichtenhofer et al. (2021), we use a 3-layer projection MLP during pretraining only. The MLP has
hidden dimension 2048 and final embedding dimension of 128 with no batch norm (BN). The MLP
is then removed for downstream experiments. As mentioned above, we use two separate MLP heads
for producing intra-video and NN embeddings.

Pretraining Hyperparameters. We train for 200 epochs using SGD optimizer (momentum 0.9,
weight decay 10−4) with a total batch size of 512. BN statistics are computed per GPU. We
linearly warmup the learning rate to 0.4 over the first 35 epochs, then use half-period cosine de-
cay (Loshchilov & Hutter, 2016).

We use a queue storing 65536 negatives and shuffling-BN to avoid information leakage and over-
fitting (He et al., 2020). The momentum encoder weights are updated per Eq. 6 with an annealed
momentum coeff. as in Feichtenhofer et al. (2021), initialized to 0.994.

Data and Augmentations We sample two 8-frame clips with a temporal stride of 8 from each
video for self-supervised pretraining. We apply random shortest-side resizing to [256, 320] pixels,
color jittering (ratio 0.4, p=0.8), grayscale conversion (p=0.2), Gaussian blur (p=0.5), horizontal flip
(p=0.2), and random cropping to 224 × 224.

A.5 EVALUATION DETAILS

A.5.1 ACTION RECOGNITION

For UCF101 Soomro et al. (2012) and HMDB51 Kuehne et al. (2011), we report finetuning top-
1 accuracy on split 1. UCF101 contains 9.5K/3.7K train/test videos with 101 action classes, and
HMDB51 contains 3.5K/1.5K videos (mostly from movies) with 51 action classes. For K400 Kay
et al. (2017), we report linear evaluation top-1 accuracy. Kinetics contains 240K/19K train/test
videos with 400 action classes. We sample 8× 8 clips for all datasets. At test-time, we use standard
10 (temporal) × 3 (spatial) crop evaluation Feichtenhofer et al. (2019). We report the avg. of three
runs.

A.5.2 ACTION DETECTION

We evaluate on the AVA dataset (Gu et al., 2018) which contains 221K/57K training and validation
videos, and report mean Average Precision (mAP) at IOU threshold 0.5. We follow Feichtenhofer
et al. (2021) and use our self-supervised trained R3D-50 as the backbone for a Faster R-CNN de-
tector. We then extend the 2D RoI features into 3D along the temporal axis, and apply RoIAlign
and temporal global average pooling. The RoI features are then max-pooled and fed to a per-class
sigmoid classifier. We also use a similar training schedule as Feichtenhofer et al. (2021), except we
train for only 20 epochs with batch size 64, and use an initial learning rate of 0.1 with 10x step-wise
learning rate decay at epochs 5, 10, and 15.

A.6 MORE ABLATIONS

A.6.1 MLP HEADS DURING PRETRAINING

We trained a version of IIVCL that shares the MLP head for both intra-video and NN pairs. In this
case, the pretraining loss fails to converge and downstream task results are poor. We hypothesize

7



Published at the Workshop on Understanding Foundation Models at ICLR 2023

this is due to the different feature spaces learned for intra-video clips vs. inter-video NNs. Thus, we
share the backbone but use separate MLP heads during pretraining.

A.7 ADDITIONAL VISUALIZATIONS

We provide additional qualitative examples to help visualize what the model is learning.

Epoch 10

Epoch 50

Epoch 150

Epoch 0

Nearest-Neighbors of query during pretraining

(a)

Epoch 10

Epoch 50

Epoch 150

Epoch 0

Nearest-Neighbors of query during pretraining

(b)

Epoch 10

Epoch 50

Epoch 150

Epoch 0

Nearest-Neighbors of query during pretraining

(c)

Epoch 10

Epoch 50

Epoch 150

Epoch 0

Nearest-Neighbors of query during pretraining

(d)

Figure 4: Evolution of inter-video nearest-neighbor positives during pretraining, starting from ran-
dom initialization. Videos are sampled across the dataset using similarity measured by the learned
feature space, which improves during pretraining. Top row is the query video while other rows in-
dicate different epochs of pretraining.

A.8 NEAREST-NEIGHBOR EVOLUTION DURING PRETRAINING

In Figure 4, we show how the nearest-neighbors vary over the course of pre-training, starting from
random initialization. We observe that as training progresses, the nearest-neighbors become more
semantically similar, which complements Figure 3b) of the main paper.
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A.9 DISCUSSION

A.9.1 CO-OCCURRENCE OF SEMANTIC CLASSES DURING PRETRAINING

Although labels are not used during self-supervised pretraining, we analyze the probability that a
video in the negative queue belongs to the same class as the query video, to understand why the
nearest-neighbor objective is beneficial. Assume the queue samples are uniformly sampled and that
each class is balanced. Let the pretraining dataset have K balanced classes, and the queue have Q
uniformly sampled samples where Q is smaller than the size of the dataset. Then the probability
of the above event is 1 - [(K − 1)/K]Q, which is well over 0.9 for K=400 (number of classes in
Kinetics-400), Q=1024. Note that this calculation also applies to approaches that sample negatives
from the mini-batch; let Q be the mini-batch size. CVRL Qian et al. (2021) uses a mini-batch
size of 1024 during pretraining. Thus, it is extremely likely that videos belonging to same class
as the query are pushed away in the embedding space as negatives in works like He et al. (2020);
Chen et al. (2020a); Qian et al. (2021); Feichtenhofer et al. (2021). Our work does not address
this issue by removing poor choices of negatives from the negative set, but rather leverages those
similar videos as additional positive keys for a second loss term via the NN sampling strategy, thus
providing additional sources of similarity to learn from that would otherwise be ignored.

Additionally, by dynamically computing the positive key using the learned representation space and
sampling videos globally, we allow the model to continually evolve its notion of semantic similarity;
the quality of the chosen NNs improves as the model learns as demonstrated by Fig. 3. With intra-
video positive pair sampling, the learned representation is not used to choose the positive pairs —
two clips are simply randomly sampled from within a single video.

A.9.2 LIMITATIONS AND FUTURE WORK

While the focus of our work was on improving the diversity of positive keys and balancing global
with local notions of similarity, our method can be improved by reducing false negatives similar
to works such as Chuang et al. (2020). We could also try leveraging audio-video correspondence.
Lastly, we are interested in further analyzing why certain pretext tasks succeed or fail for certain
downstream tasks, which may inform the design of future self-supervised learning frameworks.
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