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Abstract

We develop a meta-learning framework for simple regret min-
imization in bandits. In this framework, a learning agent in-
teracts with a sequence of bandit tasks, which are sampled
i.i.d. from an unknown prior distribution, and learns its meta-
parameters to perform better on future tasks. We propose the
first Bayesian and frequentist meta-learning algorithms for
this setting. The Bayesian algorithm has access to a prior dis-
tribution over the meta-parameters and its meta simple regret
over m bandit tasks with horizon n is mere Õ(m/

√
n). On

the other hand, the meta simple regret of the frequentist al-
gorithm is Õ(

√
mn+m/

√
n). While its regret is worse, the

frequentist algorithm is more general because it does not need
a prior distribution over the meta-parameters. It can also be
analyzed in more settings. We instantiate our algorithms for
several classes of bandit problems. Our algorithms are general
and we complement our theory by evaluating them empirically
in several environments.

1 Introduction
We study the problem of simple regret minimization (SRM) in
a fixed-horizon (budget) setting (Audibert and Bubeck 2010;
Kaufmann, Cappé, and Garivier 2016). The learning agent
interacts sequentially with m such tasks, where each task has
a horizon of n rounds. The tasks are sampled i.i.d. from a
prior distribution P∗, which makes them similar. We study a
meta-learning (Thrun 1996, 1998; Baxter 1998, 2000) variant
of the problem, where the prior distribution P∗ is unknown,
and the learning agent aims to learn it to reduce its regret on
future tasks.

This problem is motivated by practical applications,
such as online advertising, recommender systems, hyper-
parameter tuning, and drug repurposing (Hoffman, Shahriari,
and Freitas 2014; Mason et al. 2020; Réda, Kaufmann, and
Delahaye-Duriez 2021; Alieva, Cutkosky, and Das 2021),
where bandit models are popular due to their simplicity and
efficient algorithms. These applications include a test phase
separated from the commercialization phase, and one aims at
minimizing the regret of the commercialized product (simple
regret) rather than the cumulative regret in the test phase
(Audibert and Bubeck 2010). In all of these, the exploration
phase is limited by a fixed horizon: the budget for estimating
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click rates on ads is limited, or a hyper-parameter tuning task
has only a limited amount of resources (Alieva, Cutkosky,
and Das 2021). Meta-learning can result in more efficient
exploration when the learning agent solves similar tasks over
time.

To understand the benefits of meta-learning, consider the
following example. Repeated A/B tests are conducted on a
website to improve customer engagement. Suppose that the
designers always propose a variety of website designs to test.
However, dark designs tend to perform better than light ones,
and thus a lot of customer traffic is repeatedly wasted to dis-
cover the same pattern. One solution to reducing waste is that
the designers to stop proposing light designs. However, these
designs are sometimes better. A more principled solution is
to automatically adapt the prior P∗ in A/B tests to promote
dark designs unless proved otherwise by evidence. This is
the key idea in the proposed solution in this work.

We make the following contributions. First, we propose
a general meta-learning framework for fixed-horizon SRM
in Section 2. While several recent papers studied this prob-
lem in the cumulative regret setting (Bastani, Simchi-Levi,
and Zhu 2019; Cella, Lazaric, and Pontil 2020; Kveton et al.
2021; Basu et al. 2021; Simchowitz et al. 2021), this work
is the first application of meta-learning to SRM. We develop
general Bayesian and frequentist algorithms for this problem
in Sections 3 and 4. Second, we show that our Bayesian algo-
rithm, which has access to a prior over the meta-parameters
of P∗, has meta simple regret Õ(m/

√
n) over m bandit tasks

with horizon n. Our frequentist algorithm is more general
because it does not need a prior distribution over the meta-
parameters. However, we show that its meta simple regret is
Õ(
√
mn+m/

√
n), and thus, worse than that of the Bayesian

algorithm. In Section 4.2, we present a lower bound showing
that this is unimprovable in general. Third, we instantiate both
algorithms in multi-armed and linear bandits in Section 5.
These instances highlight the trade-offs of the Bayesian and
frequentist approaches, a provably lower regret versus more
generality. Finally, we complement our theory with experi-
ments (Section 7), which show the benefits of meta-learning
and confirm that the Bayesian approaches are superior when-
ever implementable.

Some of our contributions are of independent interest. For
instance, our analysis of the meta SRM algorithms is based on
a general reduction from cumulative regret minimization in



Section 3.1, which yields novel and easily implementable al-
gorithms for Bayesian and frequentist SRM, based on Thomp-
son sampling (TS) and upper confidence bounds (UCBs) (Lu
and Van Roy 2019). To the best of our knowledge, only
Komiyama et al. (2021) studied Bayesian SRM before (Sec-
tion 6). In Section 5.2, we also extend the analysis of frequen-
tist meta-learning in Simchowitz et al. (2021) to structured
bandit problems.

2 Problem Setup
In meta SRM, we consider m bandit problems with arm set
A that appear sequentially and each is played for n rounds.
At the beginning of each task (bandit problem) s ∈ [m],
the mean rewards of its arms µs ∈ RA are sampled i.i.d.
from a prior distribution P∗. We define [m] = {1, 2, · · · ,m}
for any integer m. We apply a base SRM algorithm, alg,
to task s and denote this instance by algs. The algorithm
interacts with task s for n rounds. In round t ∈ [n] of
task s, algs pulls an arm As,t ∈ A and observes its re-
ward Ys,t(As,t), where E[Ys,t(a)] = µs(a). We assume that
Ys,t(a) ∼ ν(a;µs) where ν(·;µs) is the reward distribution
of all arms with parameter (mean) µs. After the n rounds the
algorithm returns arm Âalgs

or simply Âs as the best arm.
Let A∗s = arg maxa∈A µs(a) be the best arm in task s. We
define the per-task simple regret for task s as

SRs(n, P∗) = Eµs∼P∗Eµs [∆s], (1)

where ∆s = µs(A
∗
s) − µs(Âs). The outer expectation is

w.r.t. the randomness of the task instance, and the inner one
is w.r.t. the randomness of rewards and algorithm. This is the
common frequentist simple regret averaged over instances
drawn from P∗.

In the frequentist setting, we assume that P∗ is unknown
but fixed, and define the frequentist meta simple regret as

SR(m,n, P∗) =

m∑
s=1

SRs(n, P∗) . (2)

In the Bayesian setting, we still assume that P∗ is unknown.
However, we know that it is sampled from a known meta
prior Q. We define Bayesian meta simple regret as

BSR(m,n) = EP∗∼Q[SR(m,n, P∗)] . (3)

3 Bayesian Meta-SRM
In this section, we present our Bayesian meta SRM algorithm
(B-metaSRM), whose pseudo-code is in Algorithm 1. The
key idea is to deploy alg for each task with an adaptively
refined prior learned from the past interactions, which we
call an uncertainty-adjusted prior, Ps(µ). This is an approx-
imation to P∗ and it is the posterior density of µs given the
history up to task s. At the beginning of task s, B-metaSRM
instantiates alg with Ps, denoted as algs = alg(Ps), and
uses it to solve task s.

The base algorithm alg is Thompson Sampling (TS)
or Bayesian UCB (BayesUCB) (Lu and Van Roy 2019).
During its execution, algs keeps updating its posterior
over µs as Ps,t(µs) ∝ Ls,t(µs)Ps(µs), where Ls,t(µs) =

∏t
`=1 P(Ys,`|As,`, µs) is the likelihood of observations in

task s up to round t under task parameter µs. TS pulls the
arms proportionally to being the best w.r.t. the posterior.
More precisely, it samples µ̃s,t ∼ Ps,t and then pulls arm
As,t ∈ arg maxa∈A µ̃s,t(a). BayesUCB is the same but it
pulls the arm with largest Bayesian upper confidence bound
(see Appendix C and Eq. (12) for details).

The critical step is how Ps is updated. Let θ∗ be the pa-
rameter of P∗ . At task s, B-metaSRM maintains a posterior
density over the parameter θ∗, called meta-posterior Qs(θ),
and uses it to compute Ps(µ). We use the following recursive
rule from Proposition 1 of Basu et al. (2021) to update Qs
and Ps.
Proposition 1. Let Ls−1(·) = Ls−1,n(·) be the likelihood of
observations right before the start of task s. We let Pθ be the
prior distribution parameterized by θ. Then alg computes
Qs and Ps as

Qs(θ) =

∫
µ

Ls−1(µ)Pθ(µ)dκ2(µ)Qs−1(θ), ∀θ (4)

Ps(µ) =

∫
θ

Pθ(µ)Qs(θ)dκ1(θ), ∀µ (5)

where κ1 and κ2 are the probability measures of θ and µ. We
initialize Eq. (4) with L0 = 1 and Q0 = Q, where Q is the
meta prior.

Note that this update rule is computationally efficient for
Gaussian prior with Gaussian meta-prior, but not many other
distributions. This computational issue can limit the applica-
bility of our Bayesian algorithm.

When task s ends, algs returns the best arm Âalgs
by

sampling from the distribution

Âalgs
∼ ρs, ρs(a) :=

Na,s
n

, (6)

where Na,s := |{t ∈ [n] : As,t = a}| is the number of
rounds where arm a is pulled. That is, the algorithm chooses
the arms proportionally to their number of pulls. This deci-
sion rule facilitates the analysis of our algorithms based on
a reduction from cumulative to simple regret. We develop
this reduction in Section 3.1 and show that per-task simple
regret is essentially the cumulative regret divided by n. This
yields novel algorithms for Bayesian and frequentist SRM
with guarantees.

3.1 Cumulative to Simple Regret Reduction
Fix task s and consider an algorithm that pulls a sequence of
arms (As,t)t∈[n]. Let its per-task cumulative regret with prior
P be Rs(n, P ) := Eµs∼PEµs [nµs(A

∗
s)−

∑n
t=1 µs(As,t)],

where the inner expectation is taken over the randomness in
the rewards and algorithm. Now suppose that at the end of
the task, we choose arm a with probability ρs(a) and declare
it to be the best arm Âs. Then the per-task simple regret of
this procedure is bounded as follows.
Proposition 2 (Cumulative to Simple Regret). For task s
with n rounds, if we return an arm with probability propor-
tional to its number of pulls as the best arm, the per-task
simple regret with prior P is SRs(n, P ) = Rs(n, P )/n.



Algorithm 1: Bayesian Meta-SRM (B-metaSRM)

Input: Meta prior Q, base algorithm alg
Initialize: Meta posterior Q0 ← Q
for s = 1, . . . ,m do

Receive the current task s, µs ∼ P∗
Compute meta posterior Qs using Eq. (4)
Compute uncertainty-adjusted prior Ps using Eq. (5)
Instantiate alg for task s, algs ← alg(Ps)
Run algs for n rounds
Return the best arm Âalgs

∼ ρs using Eq. (6)
end for

We prove this proposition in Appendix B using the linearity
of expectation and properties of ρs. Note that Proposition 2
applies to both frequentist and Bayesian meta simple regret.
This is because the former is a summation of SRs over tasks,
and the latter is achieved by taking an expectation of the
former over P∗.

3.2 Bayesian Regret Analysis
Our analysis of B-metaSRM is based on results in Basu
et al. (2021) and Lu and Van Roy (2019), combined with
Section 3.1. Specifically, let Γs,t be an information-theoretic
constant independent of m and n that bounds the instant
regret of the algorithm at round t of task s. We defer its
precise definition to Appendix C as it is only used in the
proofs. The following generic bound for the Bayesian meta
simple regret of B-metaSRM holds.
Theorem 3 (Information Theoretic Bayesian Bound). Let
{Γs}s∈[m] and Γ be non-negative constants, such that Γs,t ≤
Γs ≤ Γ holds for all s ∈ [m] and t ∈ [n] almost surely. Then,
the Bayesian meta simple regret (Eq. 3) of B-metaSRM
satisfies

BSR(m,n) ≤ Γ

√
m

n
I(θ∗; τ1:m) (7)

+

m∑
s=1

Γs

√
I(µs; τs|θ∗, τ1:s−1)

n
+

m∑
s=1

n∑
t=1

E[βs,t]

n
,

where τ1:s = ⊕s`=1(A`,1, Y`,1, · · · , A`,n, Y`,n) is the trajec-
tory up to task s, τs is similarly defined for the history only
in task s, and I(·; ·) and I(·; ·|·) are mutual information and
conditional mutual information, respectively.

The proof is in Appendix C. It builds on the analysis in
Basu et al. (2021) and uses our reduction in Section 3.1. Our
reduction readily applies to Bayesian meta simple regret by
linearity of expectation.

The first term in Eq. (7) is the price for learning the prior
parameter θ∗ and the second one is the price for learning
the mean rewards of tasks (µs)s∈[m] given known θ∗. It has
been shown in many settings that the mutual information
terms grow slowly with m and n (Lu and Van Roy 2019;
Basu et al. 2021), and thus the first term is Õ(

√
m/n) and

negligible. The second term is Õ(m/
√
n), since we solve m

independent problems, each with Õ(1/
√
n) simple regret. In

Section 5.2, we discuss a bandit environment where Γs,t and
βs,t are such that the last term of the bound is comparable to

Algorithm 2: Frequentist Meta-SRM (f-metaSRM)

Input: Exploration strategy explore, base algorithm
alg
Initialize: τ̃1 ← ∅
for s = 1, . . . ,m do

Receive the current task s, µs ∼ P∗
Explore the arms using explore
Append explored arms and their observations to τ̃s
Compute θ̂s using τ̃s as an estimate of θ∗
Instantiate alg for task s, algs ← alg(θ̂s)
Run algs for the rest of the n rounds
Return the best arm Âalgs

∼ ρs using Eq. (6)
τ̃s+1 ← τ̃s

end for

the rest. This holds in several other environments discussed
in Lu and Van Roy (2019); Basu et al. (2021), and Liu et al.
(2022).

4 Frequentist Meta-SRM
In this section, we present our frequentist meta SRM algo-
rithm (f-metaSRM), whose pseudo-code is in Algorithm 2.
Similarly to B-metaSRM, f-metaSRM uses TS or UCB
as its base algorithm alg. However, it directly estimates its
prior parameter, instead of maintaining a meta-posterior. At
the beginning of task s ∈ [m], f-metaSRM explores the
arms for a number of rounds using an exploration strategy
denoted as explore. This strategy depends on the prob-
lem class and we specify it for two classes in Section 5.
f-metaSRM uses samples collected in the exploration phase
of all the tasks up to task s, τ̃s, to update its estimate of
the prior parameter θ̂s. Then, it instantiates the base al-
gorithm with this estimate, denoted as algs =alg (θ̂s),
and uses algs for the rest of the rounds of task s. Here
alg(θ) := alg(Pθ) is the base algorithm alg instantiated
with prior parameter θ (Note that we used a slightly different
parameterization of alg compared to Section 3). When task
s ends, algs returns the best arm Âalgs

by sampling from
the probability distribution ρs defined in Eq. (6).

While B-metaSRM uses a Bayesian posterior to maintain
its estimate of θ∗, f-metaSRM relies on a frequentist ap-
proach. Therefore, it applies to settings where computing the
posterior is not computationally feasible. Moreover, we can
analyze f-metaSRM for general settings beyond Gaussian
bandits.

4.1 Frequentist Regret Analysis
In this section, we prove an upper bound for the frequentist
meta simple regret (Eq. 2) of f-metaSRM with TS alg. To
start, we bound the per-task simple regret of alg relative to
oracle that knows θ∗. To be more precise, this is the differ-
ence between the means of arms returned by alg instantiated
with some prior parameter θ and the true prior parameter θ∗.

The total variation (TV) distance for two distributions P
and P ′ over the same probability space (Ω,F)1 is defined as

1Ω is the sample space and F is the sigma-algebra.



TV(P || P ′) := supE∈F |P (E) − P ′(E)|. We use TV to
measure the distance between the estimated and true priors.
We fix task s and drop subindexing by s. In the following, we
bound the per-task simple regret of alg(θ) relative to oracle
alg(θ∗).
Theorem 4. Suppose Pθ∗ is the true prior of the tasks
and satisfies Pθ∗(diam(µ) ≤ B) = 1, where diam(µ) :=
supa∈A µ(a)−infa∈A µ(a). Let θ be a prior parameter, such
that TV(Pθ∗ || Pθ) = ε. Also, let Âalg(θ∗) and Âalg(θ) be
the arms returned by alg(θ∗) and alg(θ), respectively. Then
we have

Eµ∼Pθ∗E
[
µ(Âalg(θ∗))− µ(Âalg(θ))

]
≤ 2nεB. (8)

Moreover, if the prior is coordinate-wise σ2
0-sub-Gaussian

(Definition 14 in Appendix E), then we may write the RHS of

Eq. (8) as 2nε
(

diam
(
Eθ∗ [µ]

)
+σ0

(
8+5

√
log |A|

min(1,2nε)

))
,

where Eθ∗ [µ] is the expectation of the mean reward of the
arms, µ, given the true prior θ∗.

The proof in Appendix E uses the fact that TS is a 1-Monte
Carlo algorithm, as defined by Simchowitz et al. (2021). It
builds on Simchowitz et al. (2021) analysis of the cumulative
regret, and extends it to simple regret. We again use our
reduction in Section 3.1, which shows how it can be applied
to a frequentist setting.

Theorem 4 shows that an ε prior misspecification leads to
O(nε) simple regret cost in f-metaSRM. The constant terms
in the bounds depend on the prior distribution. In particular,
for a bounded prior, they reflect the variability (diameter) of
the expected mean reward of the arms. Moreover, under a
sub-Gaussian prior, the bound depends logarithmically on the
number of arms |A| and sub-linearly on the prior variance
proxy σ2

0 .
Next, we bound the frequentist meta simple regret (Eq. 2)

of f-metaSRM.
Corollary 4.1 (Meta Simple Regret of f-metaSRM). Let
the explore strategy in Algorithm 2 be such that εs =
TV(Pθ∗ || Pθ̂s) = O(1/

√
s) for each task s ∈ [m]. Then the

frequentist meta simple regret of f-metaSRM is bounded as

SR(m,n, Pθ∗) = O
(

2
√
mnB +m

√
|A|/n

)
. (9)

The proof is in Appendix E and decomposes the frequentist
meta simple regret into two terms: (i) the per-task simple
regret of alg(θ̂s) relative to oracle alg(θ∗) in task s, which
we bound in Theorem 4, and (ii) the meta simple regret of
the oracle alg(θ∗), which we bound using our cumulative
regret to simple regret reduction (Section 3.1).

The O(
√
mn) term is the price of estimating the prior

parameter, because it is the per-task simple regret relative to
the oracle. The O(m

√
|A|/n) term is the meta simple regret

of the oracle over m tasks.
Comparing to our bound in Theorem 3, B-metaSRM has

a lower regret of O(
√
m/n+m/

√
n) = O(m/

√
n). More

precisely, only the price for learning the prior is different
as both bounds have O(m/

√
n) terms. Note that despite its

smaller regret bound, B-metaSRM may not be computa-
tionally feasible for arbitrary distributions and priors, while

f-metaSRM is since it directly estimates the prior parameter
using frequentist techniques.

4.2 Lower Bound
In this section, we prove a lower bound on the relative per-
task simple regret of a γ-shot TS algorithm, i.e., a TS al-
gorithm that takes γ ∈ N samples (instead of 1) from the
posterior in each round. This lower bound compliments our
upper bound in Theorem 4 and shows that Eq. (8) is near-
optimal. The proof of our lower bound builds on a cumula-
tive regret lower bound in Theorem 3.3 of Simchowitz et al.
(2021) and extends it to simple regret. We present the proof
in Appendix E.2.
Theorem 5 (Lower Bound). Let TSγ(θ) be a γ-shot TS algo-
rithm instantiated with the prior parameter θ. Also let Pθ and
Pθ′ be two task priors. Let µ ∈ [0, 1]A and fix a tolerance
η ∈ (0, 1

4 ). Then there exists a universal constant c0 such
that for any horizon n ≥ c0

η , number of arms |A| = nd c0η e,
and error ε ≤ η

c0γn
, we have TV(Pθ || Pθ′) = ε and the

difference of per-task simple regret of TSγ(θ) and TSγ(θ′)

satisfies E[µ(ÂTSγ(θ))]− E[µ(ÂTSγ(θ′))] ≥ ( 1
2 − η)γnε.

This lower bound holds for any setting with large enough
n and |A| = O(n2), and a small prior misspecification error
ε = O(1/n2). This makes it relatively general.

5 Meta-Learning Examples
In this section, we apply our algorithms to specific priors and
reward distributions. The main two are the Bernoulli and lin-
ear (contextual) Gaussian bandits. We analyze f-metaSRM
in an explore-then-commit fashion, where f-metaSRM es-
timates the prior using explore in the first m0 tasks and
then commits to it. This is without loss of generality and only
for simplicity.

5.1 Bernoulli Bandits
We start with a Bernoulli multi-armed bandit (MAB) prob-
lem, as TS was first analyzed in this setting (Agrawal and
Goyal 2012). Consider Bernoulli rewards with beta priors
for A = [K] arms. In particular, assume that the prior is
P∗ =

⊗
a∈A Beta(α∗a, β

∗
a). Therefore, α∗a and β∗a are the

prior parameters of arm a and the arm mean µs(a) is the
probability of getting reward 1 for arm a when it is pulled.
Beta(α, β) is the beta distribution with a support on (0, 1)
with parameters α > 0 and β > 0.
B-metaSRM in this setting does not have a computation-

ally tractable meta-prior (Basu et al. 2021). We can address
this in practice by discretization and using TS as described
in Section 3.4 of Basu et al. (2021). However, the theoretical
analysis for this case does not exist. This is because a compu-
tationally tractable prior for a product of beta distributions
does not exist. It is challenging to generalize our Bayesian
approach to this class of distributions as we require more
than the standard notion of conjugacy.

In the contrary, f-metaSRM directly estimates the beta
prior parameters, (α∗a)a∈A and (β∗a)a∈A based on the ob-
served Bernoulli rewards as follows. The algorithm explores
only in m0 ≤ m tasks. explore samples arm 1 in the



first t0 rounds of first m0/K tasks, and arm 2 in the next
m0/K tasks similarly, and so on for arm 3 to K. In other
words, explore samples arm a ∈ [K] in the first t0 rounds
of a’th batch of size m0/K tasks. Let Xs denote the cu-
mulative reward collected in the first t0 rounds of task s.
Then, the random variables X1, . . . , Xm0/K are i.i.d. draws
from a Beta-Binomial distribution (BBD) with parameters
(α∗1, β

∗
1 , t0), where t0 denotes the number of trials of the

binomial component. Similarly, X(m0/K)+1, · · · , X2m0/K

are i.i.d. draws from a BBD with parameters (α∗2, β
∗
2 , t0).

In general, X(a−1)(m0/K)+1, · · · , Xam0/K are i.i.d. draws
from a BBD with parameters (α∗a, β

∗
a, t0). Knowing this, it

is easy to calculate the prior parameters for each arm using
the method of moments (Tripathi, Gupta, and Gurland 1994).
The detailed calculations are in Appendix D. We prove the
following result in Appendix E.3.
Corollary 5.1 (Frequentist Meta Simple Regret, Bernoulli).
Let alg be a TS algorithm that uses the method of mo-
ments described and detailed in Appendix D, to estimate
the prior parameters with m0 ≥ C|A|2 log(|A|/δ)

ε2 explo-
ration tasks (explore-then-commit). Then the frequentist meta
simple regret of f-metaSRM satisfies SR(m,n, Pθ∗) =

O
(
2mnε + m

√
|A| log(n)

n + m0

)
, for m ≥ m0 with proba-

bility at least 1− δ.

With small enough ε, the bound shows Õ(m/
√
|A|/n)

scaling which we conjecture is the best an oracle that knows
the correct prior of each task could do in expectation. The
bound seems to be only sublinear in n if ε = O(1/n3/2).
However, since ε ∝ m

−1/2
0 and we know

∑m
z=1 z

−1/2 =

m1/2, if the exploration continues in all tasks, the regret

bound above simplifies to O
(√

mn+m
√
|A| log(n)

n

)
.

5.2 Linear Gaussian Bandits
In this section, we consider linear contextual bandits. Suppose
that each arm a ∈ A is a vector in Rd and |A| = K. Also,
assume νs(a;µs) = N (a>µs, σ

2), i.e., with a little abuse
of notation µs(a) = a>µs, where µs is the parameter of
our linear model. A conjugate prior for this problem class is
P∗ = N (θ∗,Σ0), where Σ0 ∈ Rd×d is known and we learn
θ∗ ∈ Rd.

In the Bayesian setting, we assume that the meta-prior is
Q = N (ψq,Σq), where ψq ∈ Rd and Σq ∈ Rd×d are both
known. In this case, the meta-posterior is Qs = N (θ̂s, Σ̂s),
where θ̂s ∈ Rd and Σ̂s ∈ Rd×d are calculated as

θ̂s = Σ̂s

(
Σ−1
q ψq +

s−1∑
`=1

B`
σ2
− V`
σ2

(
Σ−1

0 +
V`
σ2

)−1B`
σ2

)
,

Σ̂−1
s = Σ−1

q +

s−1∑
`=1

V`
σ2
− V`
σ2

(
Σ−1

0 +
V`
σ2

)−1 V`
σ2
,

where V` =
∑n
t=1A`,tA

>
`,t is the outer product of the

feature vectors of the pulled arms in task ` and B` =∑n
t=1A`,tY`,t(A`,t) is their sum weighted by their rewards

(see Lemma 7 of Kveton et al. (2021) for more details). By

Proposition 1, we can calculate the task prior for task s as
Ps = N (θ̂s, Σ̂s + Σ0). When K = d and A is the standard
Euclidean basis of Rd, the linear bandit reduces to aK-armed
bandit.

Assuming that maxa∈A ‖a‖ ≤ 1 by a scaling argument,
the following result holds by an application of our reduction
in Section 3.1, and we prove it in Appendix C.1. For a matrix
A ∈ Rd×d, let λ1(A) denote its largest eigenvalue.
Corollary 5.2 (Bayesian Meta Simple Regret, Linear Ban-
dits). For any δ ∈ (0, 1], the Bayesian meta simple re-
gret of B-metaSRM in the setting of Section 5.2 with TS
alg is bounded as BSR(m,n) ≤ c1

√
dm/n + (m +

c2)SRδ(n) + c3dm/n, where c1 = O(
√

log(K/δ) logm),
c2 = O(logm), and c3 is a constant in m and n. Also
SRδ(n) is the per-task simple regret bounded as SRδ(n) ≤
c4

√
d
n +

√
2δλ1(Σ0), where c4 = O

(√
log(Kδ ) log n

)
.

The first term in the regret is Õ(
√
dm/n) and represents

the price of learning θ∗. The second term is the simple regret
of m tasks when θ∗ is known and is Õ(m

√
d/n). The last

term is the price of the forced exploration and is negligible,
Õ(m/n). Comparing to the analysis in Basu et al. (2021),
we prove a similar bound for B-metaSRM with BayesUCB
base algorithm in Appendix C.3.

In the frequentist setting, we simplify the setting to P∗ =
N (θ∗, σ

2
0Id). The case of general covariance matrix for the

MAB Gaussian is dealt with in Simchowitz et al. (2021).
We extend the results of Simchowitz et al. (2021) for meta-
learning to linear bandits. Our estimator of θ∗, namely θ̂s,
is such that TV

(
Pθs || Pθ̂∗

)
is bounded based on all the

observations up to task s. We show that for any ε, δ ∈ (0, 1),
with probability at least 1 − δ over the realizations of the
tasks and internal randomization of the meta-learner, θ̂∗ is
close to θ∗ in TV distance.

The key idea of the analysis is bounding the regret rela-
tive to an oracle. We use Theorem 4 to bound the regret of
f-metaSRM relative to an oracle alg(θ∗) which knows the
correct prior. Our analysis and estimator also apply to sub-
Gaussian distributions, but we stick to linear Gaussian bandits
for readability. Without loss of generality, let a1, . . . , ad be a
basis forA such that Span({a1, . . . , ad}) = Rd. Resembling
Section 5.1, we only need to explore the basis. The explo-
ration strategy, explore in Algorithm 2, samples the basis
a1, . . . , ad in the first m0 ≤ m tasks. Then the least-squares
estimate of θ∗ is

θ̂∗ := V −1
m0

m0∑
s=1

d∑
i=1

aiys,i , (10)

where Vm0 := m0

∑d
i=1 aia

>
i is the outer product of the

basis. This gives an unbiased estimate of θ∗. Then we can
guarantee the performance of explore as follows.
Theorem 6 (Linear Bandits Frequentist Estimator). In
the setting of Section 5.2, for any ε and δ ∈ (2e−d, 1),

if n ≥ d and m0 ≥
(

d log(2/δ)
∑d
i=1 σ

2
i

2σ0λ4
d(

∑d
i=1 aia

>
i )ε4

)1/3

, then

TV(Pθ∗ || Pθ̂∗) ≤ ε with probability at least 1− δ.



We prove this by bounding the TV distance of the estimate
and correct prior using the Pinsker’s inequality. Then the KL-
divergence of the correct prior and the prior with parameter θ̂∗
boils down to ‖θ∗−θ̂∗‖2, which is bounded by the Bernstein’s
inequality (see Appendix E.4 for the proof).

Now it is easy to bound the frequentist meta simple regret
of f-metaSRM using the sub-Gaussian version of Corol-
lary 4.1 in Appendix E. We prove the following result in
Appendix E.4 by decomposing the simple regret into the
relative regret of the base algorithm w.r.t. the oracle.

Corollary 5.3 (Frequentist Meta Simple Regret, Lin-
ear Bandits). In Algorithm 2, let alg be a TS al-
gorithm and use Eq. (10) for estimating the prior

parameters with m0
3 ≥

(
d log(2/

√
δ)

∑d
i=1 σ

2
i

2σ0λ4
d(

∑d
i=1 aia

>
i )ε4

)
. Then

the frequentist meta simple regret of Algorithm 2 is
Õ
(

2m1/4n diam(Eθ∗ [µ]) +md3/2 logK√
n

)
with probability

at least 1− δ.

This bound is Õ(m1/4n‖θ∗‖∞ + md3/2/
√
n), where

‖ · ‖∞ is the infinity norm. The first term is the price of esti-
mating the prior and the second one is the standard frequentist
regret of linear TS for m tasks divided by n, Õ(md3/2/

√
n).

Compared to Corollary 5.2, the above regret bound is looser.

6 Related Work
To the best of our knowledge, there is no prior work on meta-
learning for SRM. We build on several recent works on meta-
learning for cumulative regret minimization (Bastani, Simchi-
Levi, and Zhu 2019; Cella, Lazaric, and Pontil 2020; Kveton
et al. 2021; Basu et al. 2021; Simchowitz et al. 2021). Broadly
speaking, these works either study a Bayesian setting (Kveton
et al. 2021; Basu et al. 2021; Hong et al. 2022), where the
learning agent has access to a prior distribution over the
meta-parameters of the unknown prior P∗; or a frequentist
setting (Bastani, Simchi-Levi, and Zhu 2019; Cella, Lazaric,
and Pontil 2020; Simchowitz et al. 2021), where the meta-
parameters of P∗ are estimated using frequentist estimators.
We study both the Bayesian and frequentist settings. Our
findings are similar to prior works, that the Bayesian methods
have provably lower regret but are also less general when
insisting on the exact implementation.

Meta-learning is an established field of machine learning
(Thrun 1996, 1998; Baxter 1998, 2000; Finn, Xu, and Levine
2018), and also has a long history in multi-armed bandits
(Azar, Lazaric, and Brunskill 2013; Gentile, Li, and Zappella
2014; Deshmukh, Dogan, and Scott 2017). Tuning of bandit
algorithms is known to reduce regret (Vermorel and Mohri
2005; Maes, Wehenkel, and Ernst 2012; Kuleshov and Precup
2014; Hsu et al. 2019) and can be viewed as meta-learning.
However, it lacks theory. Several papers tried to learn a bandit
algorithm using policy gradients (Duan et al. 2016; Boutilier
et al. 2020; Kveton et al. 2020; Yang and Toni 2020; Min,
Moallemi, and Russo 2020). These works focus on offline op-
timization against a known prior P∗ and are in the cumulative
regret setting.

Our SRM setting is also related to fixed-budget best-arm
identification (BAI) (Gabillon, Ghavamzadeh, and Lazaric

2012; Alieva, Cutkosky, and Das 2021; Azizi, Kveton, and
Ghavamzadeh 2022). In BAI, the goal is to control the prob-
ability of choosing a suboptimal arm. The two objectives
are related because the simple regret can be bounded by the
probability of choosing a suboptimal arm multiplied by the
maximum gap.

While SRM has a long history (Audibert and Bubeck
2010; Kaufmann, Cappé, and Garivier 2016), prior works
on Bayesian SRM are limited. Russo (2020) proposed a TS
algorithm for BAI. However, its analysis and regret bound are
frequentist. The first work on Bayesian SRM is Komiyama
et al. (2021). Beyond establishing a lower bound, they pro-
posed a Bayesian algorithm that minimizes the (Bayesian)
per-task simple regret in Eq. (1). This algorithm does not use
the prior P∗ and is conservative. As a side contribution of our
work, we establish Bayesian per-task simple regret bounds
for posterior-based algorithms in this setting.

7 Experiments
In this section, we empirically compare our algorithms by
their average meta simple regret over 100 simulation runs. In
each run, the prior is sampled i.i.d. from a fixed meta-prior.
Then the algorithms run on tasks sampled i.i.d. from the prior.
Therefore, the average simple regret is a finite-sample approx-
imation of the Bayesian meta simple regret. Alternatively, we
evaluate the algorithms based on their frequentist regret in
Appendix F. We also experiment with a real-world dataset in
Appendix F.1.

We evaluate three variants of our algorithms with TS as
alg; (1) f-metaSRM (Algorithm 2) as a frequentist Meta
TS. We tune m0 and report the point-wise best performance
for each task. (2) B-metaSRM (Algorithm 1) as a Bayesian
Meta-learning algorithm. (3) MisB-metaSRM which is the
same as B-metaSRM except that the meta-prior mean is
perturbed by uniform noise from [−50, 50]. This is to show
how a major meta-prior misspecification affects our Bayesian
algorithm. The actual meta-prior is N (0,Σq).

We do experiments with Gaussian rewards, and thus the
following are our baseline for both MAB and linear bandit
experiments. The first baseline is OracleTS, which is TS
with the correct priorN (θ∗,Σ0). Because of that, it performs
the best in hindsight. The second baseline is agnostic TS,
which ignores the structure of the problem. We implement
it with a prior N (0K ,Σq + Σ0), since µs can be viewed as
a sample from this prior when the task structure is ignored.
Note that Σq is the meta-prior covariance in Section 5.2.

The next set of baselines are state-of-the-art BAI algo-
rithms. As mentioned in Section 6, the goal of BAI is not
SRM but it is closely related. A BAI algorithm is expected
to have small simple regret for a single task. Therefore, if
our algorithms outperform them, the gain must be due to
meta-learning. We include sequential halving (SH) and its
linear variant (Lin-SH), which are special cases of GSE
(Azizi, Kveton, and Ghavamzadeh 2022), as the state-of-the-
art fixed-budget BAI algorithms. We also include LinGapE
(Xu, Honda, and Sugiyama 2018) as it shows superior SRM
performance compared to Lin-SH. All experiments have
m = 200 tasks with n = 100 rounds in each. Appendix F
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Figure 1: Learning curves for Gaussian MAB experiments. The error bars are standard deviations from 100 runs.
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Figure 2: Learning curves for linear Gaussian bandit experiments. The error bars are standard deviations from 100 runs.

describes the experimental setup in more detail and also in-
cludes additional results.

7.1 Gaussian MAB
We start our experiments with a Gaussian bandit. Specifically,
we assume thatA = [K] are K arms with a Gaussian reward
distribution νs(a;µs) = N (µs(a), 102), so σ = 10. The
mean reward is sampled as µs ∼ Pθ∗ = N (θ∗, 0.1

2IK), so
Σ0 = 0.12IK . The prior parameter is sampled from meta-
prior as θ∗ ∼ Q = N (0K , IK), i.e., Σq = IK .

Fig. 1 shows the results for various values of K. We
clearly observe that the meta-learning algorithms adapt to
the task prior and outperform TS. Both f-metaSRM and
B-metaSRM perform similarly close to OracleTS, which
confirms the negligible cost of learning the prior as ex-
pected in our bounds. We also note that f-metaSRM outper-
forms MisB-metaSRM, which highlights the reliance of the
Bayesian algorithm on a good meta-prior. SH matches the
performance of the meta-learning algorithms when K = 4.
However, as the task becomes harder (K > 4), it under-
performs our algorithms significantly. For smaller K, the
tasks share less information and thus meta-learning does not
improve the learning as much.

7.2 Linear Gaussian Bandits
Now take a linear bandit (Section 5.2) in d dimensions with
K = 5d arms, the arms are sampled from a unit sphere uni-
formly. The reward of arm a is distributed as N (a>µs, 102),
so σ = 10, and µs is sampled from P∗ = N (θ∗, 0.1

2Id),
so Σ0 = 0.12Id. The prior parameter, θ∗, is sampled from
meta-prior Q = N (0d, Id), so Σq = Id.

Fig. 2 shows experiments for various values of d. As ex-
pected, larger d increase the regret of all the algorithms. Com-
pared to Section 7.1, the problem of learning the prior is more

difficult, and the gap of B-metaSRM and OracleTS in-
creases. f-metaSRM also outperforms TS, but it has a much
higher regret than B-metaSRM. While MisB-metaSRM
under-performs f-metaSRM in the MAB tasks, it performs
closer to B-metaSRM in this experiment. The BAI algo-
rithms, Lin-SH and LinGapE, under-perform our meta-
learning algorithms and are closer to TS than in Fig. 1. The
value of knowledge transfer in the linear setting is higher
since the linear model parameter is shared by many arms.

Our linear bandit experiment confirms the applicability of
our algorithms to structured problems, which shows potential
for solving real-world problems. Specifically, the success of
MisB-metaSRM confirms the robustness of B-metaSRM
to misspecification.

8 Conclusions and Future Work

We develop a meta-learning framework for SRM, where the
agent improves by interacting repeatedly with similar tasks.
We propose two algorithms: a Bayesian algorithm that main-
tains a distribution over task parameters and the frequentist
one that estimates the task parameters using frequentist meth-
ods. The Bayesian algorithm has superior regret guarantees
while the frequentist one can be applied to a larger family of
problems.

This work lays foundations for Bayesian SRM and readily
extends to reinforcement learning (RL). For instance, we can
extend our framework to task structures, such as parallel or
arbitrarily ordered (Wan, Ge, and Song 2021; Hong et al.
2022). Our Bayesian algorithm easily extends to tabular and
factored MDPs RL (Lu and Van Roy 2019). Also, the fre-
quentist algorithm applies to POMDPs (Simchowitz et al.
2021).
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Figure 3: Generative model of the meta learning SRM setting studied in the paper. Note that there is no meta prior Q in the
frequentist setting.

A Further Setting Details
Fig. 3 illustrate the generative model of the meta learning SRM setting studied in this paper. Note that there is no meta prior Q in
the frequentist setting.

B Cumulative to Simple Regret
In this section, we propose a general framework for cumulative regret to simple regret reduction that establishes many new
algorithms and leads to efficient SRM methods. We use this simple but fundamentally important tool in our proofs. In the
frequentist analysis, this is used to bound the regret of the base algorithm. We also use this in the full regret reduction in the
Bayesian setting.

Fix a task s and consider an algorithm that pulls a sequence of arms, (As,t)t∈[n] . Now let its per-task cumulative regret with
prior P be

Rs(n, P ) := Eµs∼PE

[
nµ(A∗)−

n∑
t=1

µ(At)

]
.

where the inner expectation is taken over the algorithmic and rewards randomness. Now suppose at the end of the task, we
choose arm a with probability ρs(a) =

Na,s
n and declare it to be the best arm, Âs. Then the following result bounds the per-task

simple regret of this general procedure based on its per-task cumulative regret.

Proposition 2 (Cumulative to Simple Regret). For task s with n rounds, if we return an arm with probability proportional to its
number of pulls as the best arm, the per-task simple regret with prior P is SRs(n, P ) = Rs(n, P )/n.

Proof of Proposition 2. Fix a task s. We can rewrite its per-task simple regret as

SRs(n, P ) = Eµs∼PE

[
µs(A

∗)−
∑
a∈A

Na,s
n

µs(a)

]

= Eµs∼PE

[∑
a∈A

µs(A
∗)

n
− Na,s

n
µs(a)

]

=
Rs(n, P )

n
.

where the first equality holds by the nature of the procedure, and the last one used the linearity of expectation twice.

It is also straightforward to see that Proposition 2 works for either frequentist meta simple regret or Bayesian meta simple
regret. This is because the former is the summation of SRs over tasks, and the latter is achieved by taking an expectation of the
former over P∗.

C Bayesian Analysis
We defined τs = (As,1, Ys,1, · · · , As,n, Ys,n) to be the trajectory of task s, τ1:s = ⊕s`=1τ` be the trajectory of tasks 1 to s, and
τ1:s,t be the trajectory from the beginning of the first task up to round t− 1 of task s. Let Es,t[·] = E[·|τ1:s,t]. We define Γs,t and
βs,t to be the potentially trajectory-dependent non-negative random variables, such that the following inequality holds:

Es,t[µ(A∗s)− µ(As,t)] ≤ Γs,t

√
Is,t(µs;As,t, Ys,t) + βs,t, (11)

where Is,t(µs;As,t, Ys,t) is the mutual information of the mean reward of task s and the pair of arm taken As,t and reward
observed Ys,t in round t of task s, conditioned on the trajectory τ1:s,t. These random variables are well-defined as introduced in
Lu and Van Roy (2019).



For BayesUCB, we use the upper bound

Us,t(a) := Es,t[Ys,t(a)] + Γs,t

√
Is,t(µs;As,t, Ys,t(a)) , (12)

The quantity Es,t[Ys,t(a)] is calculated based on the posterior of µs at round t.
We remind some notation in their general form. If dP

dQ is the Radon-Nikodym derivative of P with respect to Q, we
know it is finite when P is absolutely continuous with respect to Q. Let D(P || Q) =

∫
log( dP

dQ )dP be the relative entropy
of P with respect to Q. Also, Let I(X;Y ) = D(P(X,Y ) || P(X)P(Y )) be the mutual information between X and Y
and Is,t(X;Y ) := I(X;Y |τ1:s,t) be the same mutual information given trajectory τ1:s,t. We also define the conditional
mutual information between X and Y conditioned on Z. We define this quantity as I(X;Y |Z) = E[̂I(X;Y |Z)], where
Î(X;Y |Z) = D(P (X,Y |Z) || P (X|Z)P (Y |Z)) is the random conditional mutual information between X and Y given
Z. Note that Î(X;Y |Z) is a function of Z. By the chain rule for the random conditional mutual information and taking
the expectation over Y2|Z we get Î(X;Y1, Y2|Z) = E[̂I(X;Y1|Y2, Z)|Z] + Î(X;Y2|Z). Without Z, the usual chain rule is
I(X;Y1, Y2) = I(X;Y1|Y2) + I(X;Y2).
Theorem 3 (Information Theoretic Bayesian Bound). Let {Γs}s∈[m] and Γ be non-negative constants, such that Γs,t ≤ Γs ≤ Γ
holds for all s ∈ [m] and t ∈ [n] almost surely. Then, the Bayesian meta simple regret (Eq. 3) of B-metaSRM satisfies

BSR(m,n) ≤ Γ

√
m

n
I(θ∗; τ1:m) (7)

+

m∑
s=1

Γs

√
I(µs; τs|θ∗, τ1:s−1)

n
+

m∑
s=1

n∑
t=1

E[βs,t]

n
,

where τ1:s = ⊕s`=1(A`,1, Y`,1, · · · , A`,n, Y`,n) is the trajectory up to task s, τs is similarly defined for the history only in task s,
and I(·; ·) and I(·; ·|·) are mutual information and conditional mutual information, respectively.

Proof. Fixing a prior P∗ and summing over s ∈ [m], as the reduction from cumulative to simple regret in Proposition 2 holds
for any prior, SRs(m,n, P∗) = 1

n

∑m
s=1Rs(n, P∗). Therefore, by taking expectation over P∗ ∼ Q, we know BSR(m,n) =

1
nEP∗∼Q[

∑m
s=1Rs(n, P∗)]. Now notice that EP∗∼Q[

∑m
s=1Rs(n, P∗)] is bounded by Lemma 2 of Basu et al. (2021) as follows

SR(m,n, P∗) ≤ Γ
√
mnI(θ∗; τ1:m) +

m∑
s=1

Γs
√
nI(µs; τs|θ∗, τ1:s−1) +

m∑
s=1

n∑
t=1

Eβs,t .

Now, we only need to divide the right-hand side by n.

C.1 Proof of Bayesian Linear Bandit
Corollary 5.2 (Bayesian Meta Simple Regret, Linear Bandits). For any δ ∈ (0, 1], the Bayesian meta simple regret of
B-metaSRM in the setting of Section 5.2 with TS alg is bounded as BSR(m,n) ≤ c1

√
dm/n+ (m+ c2)SRδ(n) + c3dm/n,

where c1 = O(
√

log(K/δ) logm), c2 = O(logm), and c3 is a constant in m and n. Also SRδ(n) is the per-task simple regret

bounded as SRδ(n) ≤ c4
√

d
n +

√
2δλ1(Σ0), where c4 = O

(√
log(Kδ ) log n

)
.

Proof of Corollary 5.2. This is only applying Proposition 2 to Theorem 5 of Basu et al. (2021). Note that we can directly get this
result from the generic Bayesian meta simple regret bound Theorem 3 by setting Γs,t and βs,t properly based on the properties
of linear Gaussian bandits environment from Lu and Van Roy (2019).

C.2 Information Theoretic Technical Tools
The conditional entropy terms are defined as follows:

hs,t(µs) = Es,t [− log (Ps,t(µs))] ,
hs,t(µ∗) = Es,t [− log (Ps,t(µ∗))] ,

hs,t(µs | µ∗) = Es,t [− log (Ps,t(µs | µ∗))] .
Therefore, all the different mutual information terms Is,t(·;As,t, Ys,t), and the entropy terms hs,t(·) are random variables that

depends on the history τ1:s,t.
We next state some entropy and mutual information relationships which we use later.

Proposition 7. For all s, t, and any history H1:s,t, the following hold
Is,t(µs, µ∗;As,t, Ys,t) = Is,t(µ∗;As,t, Ys,t) + Is,t(µs;As,t, Ys,t | µ∗) ,

Is,t(µs;As,t, Ys,t) = hs,t(µs)− hs,t+1(µs) .



C.3 Bayesian UCB
Let’s consider a UCB with Us,t(a) := Es,t[Ys,t(a)] + Γs,t

√
Is,t(µs;As,t, Ys,t(a)), where Es,t[·] = E[·|τ1:s,t]. We call this

BayesUCB. The Es,t[Ys,t(a)] is calculated based on the posterior of µs at round t. In the linear bandits setting, Es,t[Ys,t(a)] =

a>µ̂s,t where µ̂s,t ∼ N (θ̂s,t, Σ̂s,t) is a sample from the posterior of µ, for

θ̂s,t = Σ̂s,t

(
(Σ0 + Σ̂s)

−1µ̂s +

t−1∑
`=1

As,`Ys,`

)
, Σ̂−1

s,t = (Σ0 + Σ̂s)
−1 +

t−1∑
`=1

As,`A
T
s,`

σ2 ,

The following holds for BayesUCB algorithm, which is the analogous of Lemma 3 of Basu et al. (2021) for TS.
Lemma C.1. For all tasks s ∈ [m], rounds t ∈ [n], and any δ ∈ (0, 1], for Algorithm 1 with BayesUCB, Eq. (11) holds almost
surely for

Γs,t = 4

√
σ2

max(Σ̂s,t)

log(1 + σ2
max(Σ̂s,t)/σ2)

log
4|A|
δ

, βs,t =
δ

2
max
a∈A
‖a‖2Es,t[‖µs‖2] .

Moreover, for each task s, the following history-independent bound holds almost surely,

σ2
max(Σ̂s,t) ≤ λ1(Σ0)

(
1 +

λ1(Σq)(1+
σ2

ηλ1(Σ0) )

λ1(Σ0)+σ2/η+
√
sλ1(Σq)

)
. (13)

Proof of Lemma C.1.. Let’s define

Ms,t :=

{
µ :
∣∣a>µ− Es,t[a>µs]

∣∣ ≤ Γs,t
2

√
Is,t(µs;As,t, Ys,t(a))

}
We can characterize the trajectory dependent conditional mutual entropy of µs given the history τ1:s,t as

Is,t(µs;As,t, Ys,t) = hs,t(µs)− hs,t+1(µs)

= 1
2 log(det(2πe(Σ̂s,t−1)))− 1

2 log(det(2πeΣ̂s,t))

= 1
2 log(det(Σ̂s,t−1Σ̂−1

s,t ))

= 1
2 log

(
det

(
I + Σ̂s,t−1

As,tA
T
s,t

σ2

))
= 1

2 log

(
det

(
1 +

ATs,tΣ̂s,t−1As,t
σ2

))
Where the last equality uses the matrix determinant lemma.2 Recall that σ2

max(Σ̂s,t) = maxa∈A a
T Σ̂s,ta for all s ≤ m and

t ≤ n. For δ ∈ (0, 1], let

Γs,t = 4

√
σ2

max(Σ̂s,t−1)

log(1 + σ2
max(Σ̂s,t−1)/σ2)

log( 4|A|
δ ).

Now it follows from Lu and Van Roy (2019) Lemma 5 that for the Γs,t defined as above we have

Ps,t(µs ∈Ms,t) ≥ 1− δ/2.
Next we bound the gap as follows.

E[∆s,t] = E[1{µs ∈Ms,t}(A∗s
>µs −A>s,tµs)] + E[1{µs /∈Ms,t}(A∗s

>µs −A>s,tµs)]
We know

E[1{µs ∈Ms,t}(A∗s
>µs −A>s,tµs)] ≤ E[1{µs ∈Ms,t}(A∗s

>µs − Us,t(A∗s) + Us,t(As,t)−A>s,tµs)]
≤ E[1{µs ∈Ms,t}(Us,t(As,t)−A>s,tµs)]

≤ Es,t
[∑
a∈A

1{As,t = a}Γs,t
√

Is,t(µs; a, Ys,t(a))
]

≤ Γs,t

√
Is,t(µs;As,t, Ys,t)

2For an invertible square matrix A, and vectors u and v, by matrix determinant lemma we know det
(
A+ uvT

)
=(

1 + vTA−1u
)

det (A) . We use A = I , u = Σ̂s,t−1As,t, and v = As,t/σ
2.



where the last inequality used the same argument as in Lemma 3 of Lu and Van Roy (2019) based on the conditional independence
of As,t and µs given τ1:s,t. We also know

E[1{µs /∈Ms,t}(A∗s
>µs −A>s,tµs)] ≤ δ

2Es,t[max
a∈A
|a>µs|] = δ

2 max
a∈A
‖a‖2Es,t[‖µs‖2]

The second part of the proof is due to Basu et al. (2021) Lemma 3.

Note that Theorem 3 applies generically to any algorithm including BayesUCB, as we do not use the properties of the
algorithm in its proof.
Theorem 8 (Linear bandit, UCB). The meta simple regret of B-metaSRM with BayesUCB as its with forced exploration is
bounded for any δ ∈ (0, 1] as

BSR(m,n) ≤ c1
√
dm/n+ (m+ c2)SRδ(n) + c3

√
m/n

where c1 = O(
√

log(K/δ) logm), c2 = O(logm), and c3 is a constant in m and n. Also, SRδ(n) is a special per-task simple

regret which is bounded as SRδ(n) ≤ c4
√
d/n, where c4 = O

(√
log(K/δ) log n

)
.

Proof of Theorem 8. As shown in Theorem 5 (linear bandits) of Basu et al. (2021), for each s, we can bound w.p. 1

Γs,t ≤ 4

√√√√√√√√√√√
λ1(Σ0)

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+
√
sλ1(Σq)


log

1 + λ1(Σ0)
σ2

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+
√
sλ1(Σq)

 log(4|A|/δ).

This is true by using the upper bounds on σ2
max(Σ̂s,t) in Lemma C.1, and because the function

√
x/ log(1 + ax) for a > 0

increases with x. Therefore, we have the bounds Γs,t ≤ Γs w.p. 1 for all s and t by using appropriate s, and by setting s = 0 we
obtain Γ.

For a matrix A ∈ Rd×d, let λ`(A) denote its `-th largest eigenvalue for ` ∈ [d]. By Theorem 3 the following holds for any
δ > 0

BSR(m,n) ≤ Γ

√
m

n
I(θ∗; τ1:m) +

m∑
s=1

Γs

√
I(µs; τs|θ∗, τ1:s−1)

n
+

m∑
s=1

n∑
t=1

Eβs,t
n

≤4
√
C1 log(4 | A | /δ)

√
m

n
d
2 log

(
1 +

mnλ1(Σq)

nλd(Σ0) + σ2

)

+

m∑
s=1

4

√√√√√√√√√√√
λ1(Σ0)

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+
√
sλ1(Σq)


log

1 + λ1(Σ0)
σ2

1 +
λ1(Σq)(1+

σ2/η
λ1(Σ0) )

λ1(Σ0)+σ2/η+
√
sλ1(Σq)

 log(4|A|/δ)

√
1
n
d
2 log

(
1 + n

λ1(Σ0)

σ2

)

(I bounds from Lemma 4 Basu et al. (2021))

+
δ

2n
max
a∈A
‖a‖2

m∑
s=1

n∑
t=1

EEs,t[‖µs‖2]

≤4
√
C1 log(4|A|/δ)

√
m

n
d
2 log

(
1 +

mnλ1(Σq)

nλd(Σ0) + σ2

)

+

(
m+ 1

2λ1(Σ0)

m∑
s=1

λ1(Σq)(λ1(Σ0)+σ2/η)

λ1(Σ0)+σ2/η+
√
sλ1(Σq)

)
×

(
4
√
C2 log(4|A|/δ)

√
1
n
d
2 log

(
1 + n

λ1(Σ0)

σ2

))
(Remove highlighted,

√
1 + x ≤ 1 + x/2 for all x ≥ 1)

+
δ

2n
max
a∈A
‖a‖2

√
mn(‖µ∗‖22 + tr(Σq + Σ0)) (Eq. (14))



≤4
√
C1 log(4|A|/δ)

√
m

n
d
2 log

(
1 +

mnλ1(Σq)

nλd(Σ0) + σ2

)

+
(
m+ (1 + σ2/η

λ1(Σ0) )
√
m
)
×

(
4
√
C2 log(4|A|/δ)

√
1
n
d
2 log

(
1 + n

λ1(Σ0)

σ2

))
(Integral)

+
δ

2
max
a∈A
‖a‖2

√
m
n (‖µ∗‖22 + tr(Σq + Σ0))

where

C1 =
λ1(Σq) + λ1(Σ0)

log(1 + (λ1(Σq) + λ1(Σ0))/σ2)

C2 =
λ1(Σ0)

log
(

1 + λ1(Σ0)
σ2

) .
The first inequality substitutes Is,t terms by the appropriate bounds from Lemma 4 Basu et al. (2021). The second inequality first
removes the part highlighted in blue (which is positive) inside the logarithm, and then uses the fact that

√
1 + x ≤ 1 + x/2 for

all x ≥ 1. We also use

E[‖µs‖2] =
√
‖µ∗‖22 + tr(Σq + Σ0) . (14)

The final inequality replaces the summation by an integral over s and derives the closed form.

D Method of Moments for The Bernoulli bandits
Based on the procedure explained in Section 5.1, explore samples arm 1 in the first t0 rounds of first m0/K tasks, and arm 2
in the next m0/K tasks similarly, and so on for arm 3, 4, up to K. In other words, explore samples arm a ∈ [K] in the first t0
rounds of the a’th batch of size m0/K tasks. Let Xs denote the cumulative reward collected in the first t0 rounds of task s. Then,
the random variables X1, · · · , Xm0/K are i.i.d. draws from a Beta-Binomial distribution with parameters (α∗1, β

∗
1 , t0), where t0

denotes the number of trials of the binomial component.
For arm 1, we can retrieve α∗1, β

∗
1 based on the following equations stating the first and second moments of Xs,

E[Xs] =
t0α
∗
1

α∗1 + β∗1
, E[X2

s ] =
t0α
∗
1(t0(1 + α∗1) + β∗1)

(α∗1 + β∗1)(1 + α∗1 + β∗1)
. (15)

where we assume t0 ≥ 2. Therefore, we can estimate the prior using estimates of E[Xs],E[X2
s ], via the method of moments

(Tripathi, Gupta, and Gurland 1994). In particular,

α̂∗1 =
t0E2[Xs]− E[X2

s ]E[Xs]

t0(E[X2
s ]− E2[Xs]− E[Xs]) + E2[Xs]

(16)

β̂∗1 =
(t0 − E[Xs])(E[Xs]t0 − E[X2

s ])

t0(E[X2
s ]− E2[Xs]− E[Xs]) + E2[Xs]

(17)

For the rest of the arms, we can use a similar technique.

E Frequentist Analysis
In this section, we provide the results needed in Section 4.1 from Simchowitz et al. (2021). The rearrangement of these results
here is helpful to understand the analysis of that paper and the way we use them. We let Pθ,alg(θ′)(µ, τn) be the joint law over
the task mean µ and the full trajectory of the task, τn, when the prior parameter is θ while alg is initialized with prior parameter
θ′. Note that since the posterior of µ given the trajectory of the algorithm, τn, is conditionally independent of the algorithm, we
can use Pθ(µ|τt) := Pθ,alg(θ′)(µ|τt) for any µ given the trajectory at round t.

We define the Monte Carlo family of algorithms as follows.
Definition 9 (Monte-Carlo algorithm Simchowitz et al. 2021). Given γ > 0, any base algorithm alg instantiated with the prior
parameter θ is γ-Monte Carlo if for any θ′ and trajectory τt, t ≥ 1, we have

TV
(
Palg(θ)(At|τt) || Palg(θ′)(At|τt)

)
≤ γ TV (Pθ(µ|τt) || Pθ′(µ|τt)) .

where Palg(θ)(At|τt) is the probability of choosing arm At at round t by alg(θ), given the trajectory of the task up to the
beginning of round t, and Pθ(µ|τt) is the posterior of the mean reward, given the trajectory up to round t− 1 when the algorithm
is initialized with prior θ.



An important instance of Monte Carlo algorithms is TS, which is 1-Monte Carlo (Simchowitz et al. 2021).
First, we recite the following proposition regarding the TV distance of the trajectories under different prior initialization. The

TV distance between trajectories of the algorithm with correct prior and the same algorithm with an incorrect prior has the
following upper bound, which results from Definition 9.
Proposition 10 (TV Distance of Two Trajectories, Proposition 3.4., Simchowitz et al. (2021)). Let alg be a γ-Monte Carlo
algorithm for n ∈ N rounds. Then

TV
(
Pθ∗,alg(θ∗)(µ, τn) || Pθ∗,alg(θ′∗)(µ, τn)

)
≤ 2γnTV(Pθ∗ || Pθ′∗)

holds for any µ and τn.
See Proposition 3.4. of Simchowitz et al. (2021) for the proof.
We also need the following definition to state the next lemma for bounding the regret of our algorithm.

Definition 11 (Upper Tail Bound, Definition B.2., Simchowitz et al. (2021)). Let X be a non-negative random variable defined
on probability space (Ω,F) with probability law P and expectation E[X] <∞, and Y ∈ [0, 1] also be another random variable
defined on the same probability space, then Upper Tail Bound is defined as

ΨX(p) :=
1

p
sup
Y

E[XY ]

s.t. E[Y ] ≤ p

For p > 1 we extend the definition by setting ΨX(p) = E[X].
Lemma 12 (Relative Regret). Let alg = alg(θ∗) be an algorithm with prior parameter θ∗ and alg′ = alg(θ′∗) be the same
with different prior parameter θ′∗. Then the difference between their simple regrets in a task with n rounds coming from prior Pθ∗
is bounded as follows

Eµ∼Pθ∗E[µ(Âalg)− µ(Âalg′)] ≤ δΨθ∗(δ)

when δ = TV(Pθ∗,alg || Pθ∗,alg′) and Ψθ∗(p) := Ψdiam(µ)(p) for µ ∼ Pθ∗ .

Proof. Considering Pθ∗,alg(µ, τn) and Pθ∗,alg′(µ, τn) as µ is independent of alg prior given the trajectory then Pτ :=
Pθ∗,alg(µ) = Pθ∗,alg′(µ) =: P ′τ . Now by Lemma 13 we know there exists a coupling Q(µ, τn, τ

′
n) such that

Q(µ, τn) = Pτ , Q(µ, τ ′n) = P ′τ , Q[τn 6= τ ′n] = TV(Pτ , P
′
τ ) =: δ

Now let EQ be the corresponding expectation then

E
[
µ(Âalg)− µ(Âalg′)

]
≤ EQ

[
diam(µ)I

(
Âalg 6= Âalg′

)]
≤ EQ [diam(µ)I (τn 6= τ ′n)]

≤ δΨθ∗(δ)

where we used the Definition 11 in the last inequality and the fact that EQ [I (τn 6= τ ′n)] = Q [τn 6= τ ′n] = δ by definition of
Q.

The next result is a generic bound on the relative regret of a Monte-Carlo algorithm compared to an oracle which knows the
prior.
Theorem 4. Suppose Pθ∗ is the true prior of the tasks and satisfies Pθ∗(diam(µ) ≤ B) = 1, where diam(µ) := supa∈A µ(a)−
infa∈A µ(a). Let θ be a prior parameter, such that TV(Pθ∗ || Pθ) = ε. Also, let Âalg(θ∗) and Âalg(θ) be the arms returned by
alg(θ∗) and alg(θ), respectively. Then we have

Eµ∼Pθ∗E
[
µ(Âalg(θ∗))− µ(Âalg(θ))

]
≤ 2nεB. (8)

Moreover, if the prior is coordinate-wise σ2
0-sub-Gaussian (Definition 14 in Appendix E), then we may write the RHS of Eq. (8)

as 2nε
(

diam
(
Eθ∗ [µ]

)
+ σ0

(
8 + 5

√
log |A|

min(1,2nε)

))
, where Eθ∗ [µ] is the expectation of the mean reward of the arms, µ, given

the true prior θ∗.

Proof of Theorem 4. By Lemma 12 we know E[µ(Âalg∗)− µ(Âalg)] ≤ δΨθ∗(δ) where δ = TV(Pθ∗,alg∗ || Pθ∗,alg). Then by
Proposition 10 we know δ ≤ 2γnε. Now since p 7→ pΨθ∗(p) is non-decreasng in p (Lemma B.5 from (Simchowitz et al. 2021))
we get

E[µ(Âalg∗)− µ(Âalg)] ≤ 2γnεΨθ∗(2γnε)



Finally, by Lemma 15 we get Ψθ∗(p) ≤ B if Pθ∗ satisfies Pθ∗(diam(µ) ≤ B) = 1, whic concludes the first part of the proof.
For the second part we make sure 2γnε ∈ [0, 1], by using min(1, 2γnε), then again Lemma 15 gives

Ψθ∗(2γnε) ≤ diam(Eθ∗ [µ]) + σ0

(
8 + 5

√
log

|A|
min(1, 2γnε)

)

Corollary 4.1 (Meta Simple Regret of f-metaSRM). Let the explore strategy in Algorithm 2 be such that εs =
TV(Pθ∗ || Pθ̂s) = O(1/

√
s) for each task s ∈ [m]. Then the frequentist meta simple regret of f-metaSRM is bounded

as

SR(m,n, Pθ∗) = O
(

2
√
mnB +m

√
|A|/n

)
. (9)

Proof of Corollary 4.1. The frequentist meta simple regret decomposes in two terms.

SR(m,n, Pθ∗) =

m∑
s=1

Eµs∼Pθ∗ [µs(A
∗
s)− µs(Âalgs

)]

=

m∑
s=1

Eµs∼Pθ∗ [µs(A
∗
s)− µs(Âalg∗)] + E[µs(Âalg∗)− µs(Âalgs

)]

where alg∗ is the oracle algorithm that is initialized with the correct prior Pθ∗ . Now by Proposition 2 and the properties of
γ-Monte Carlo algorithm, alg, we can bound the the first term by O(m

√
|A|/n). This is because per-task cumulative regret of

Monte Carlo algorithm is O(
√
n|A|, e.g., for TS which we use this holds (Agrawal and Goyal 2013).

The second term is bounded by
∑m
s=1 2nγεsB based on Theorem 4. Now, if εs = O(1/

√
s) we knowO(

∑m
s=1 2nγB/

√
s) =

O(
√
mnγB.

For a sub-Gaussian prior, we can use the bound for the second term from Theorem 4 to get the following performance
guarantee similarly

SR(m,n, Pθ∗) = O

(
2
√
mγndiam(Eθ∗ [µ]) + σ0

m∑
s=1

(
8 + 5

√
log

|A|
min(1, 2γn/

√
s)

)
+m

√
|A|/n+m0B

)

E.1 Technical Tools
In this section we recite some technical tools from Simchowitz et al. (2021) that are used in our proofs.

Lemma 13 (Coupled Transport Form, Lemma B.4., Simchowitz et al. (2021)). Let P and P ′ be joint distributions over random
variables (X,Y ) with coinciding marginals P (X) = P ′(X) in the first variable. Then there exists a distribution Q(X,Y, Y ′)
whose marginals satisfy Q(X,Y ) = P (X,Y ) and Q(X,Y ′) = P ′(X,Y ), and for which we have

TV(P (X,Y ) || P ′(X,Y )) = Q[Y 6= Y ′]

.

Definition 14 (Tail Conditions). Let µ̄θ = Eθ[µ]. We say Pθ is

(i) B-bounded if Pθ∗(diam(µ) ≤ B) = 1
(ii) Coordinate-wise σ2-sub-Gaussian if for all a ∈ A,

Pθ(|µa − µ̄θ| ≥ t) ≤ 2 exp(
−t2

2σ2
)

(iii) Coordinate-wise (σ2, v)-sub-Gamma if for all a ∈ A,

Pθ(|µa − µ̄θ| ≥ t) ≤ 2 max{exp(
−t2

2σ2
), exp(

−t
2v

)}

Lemma 15 (Upper Tail Bound under Tail Conditions, Lemma B.6., Simchowitz et al. (2021)). Let µ̄θ = Eθ[µ]. Then for any
p ∈ [0, 1]

(i) If Pθ is B bounded, then Ψθ(P ) ≤ B for all p.



(ii) If Pθ is coordinate-wise σ2-sub-Gaussian and A is finite, then

Ψθ(P ) ≤ diam(µ̄θ) + σ

(
8 + 5

√
log

2|A|
p

)
(iii) if Pθ is coordinate-wise (σ2, v)-sub-Gamma and A is finite, then

Ψθ(P ) ≤ diam(µ̄θ) + σ

(
8 + 5

√
log

2|A|
p

)
+ v

(
11 + 7 log

2|A|
p

)
We can extend these for p ≥ 1 by replacing p← min(1, p).
Lemma 16 (Pinsker’s Inequality). If P and Q are two probability distributions on a measurable space (X,Σ), then

TV(P || Q) ≤
√

1

2
KL(P || Q)

Lemma 17 (Gaussian KL-divergence). If P = N (θ,Σ) and P̂ = N (θ̂, Σ̂) then

KL(P || P̂ ) =
1

2

(
tr(Σ−1/2Σ̂Σ−1/2 − I)− log det(Σ−1/2Σ̂Σ−1/2) + ‖Σ−1/2(θ̂ − θ)‖22

)
(18)

The proof is a standard result in statistics.

E.2 Lower Bound
Theorem 18 (Lower Bound). Consider any γ-shot TS algorithm TSγ(·) for γ ∈ N and a task with prior Pθ over bounded mean
rewards µ ∈ [0, 1]|A| with |A| = nd c0η e. Then there exists universal constant c0 for a fixed η ∈ (0, 1/4) such that for any horizon
n� c0

η and error ε ≤ η
c0γn

, there exists prior Pθ′ with TV(Pθ || Pθ′) = ε and

Eµ∼PθE[µ(ÂTSγ(θ))− µ(ÂTSγ(θ′))] ≥ (
1

2
− η)γnε

Proof. With the assumptions here, Theorem D.1 from Simchowitz et al. (2021) states that

R(n, Pθ)−R(n, Pθ′) ≥ (
1

2
− η)γn2ε

for TSγ(θ) and TSγ(θ′). Now by Proposition 2 and linearity of expectation we get the result as we divide the RHS with n.

Lemma 19. Let X be a random variable supported on {b1, · · · , bK} ⊂ R with bi ≤ 1 and pi := P(X = bi) for all i. Then

E[exp(X)] ≤ exp

(
K∑
i=1

pi(bi + b2i )

)
Proof. As et ≤ 1 + t+ t2 for all t ≤ 1, we have

E[exp(X)] ≤ E[1 +X +X2] = 1 +

K∑
i=1

qi(bi + b2i )

Then we can get the result noting that 1 + t ≤ et for any t ∈ R.

E.3 Proofs of Frequentist Bernoulli
We first prove the following result on the relative simple regret of a Monte-Carlo algorithm compared to an oracle algorithm
which knows the prior. This algorithm uses the method of moments estimator of Eq. (15).
Corollary 20 (Relative Per-task Simple Regret, Bernoulli Bandits). Let alg be an γ-Monte Carlo algorithm. Under the setting
of Section 5.1, let β̂∗ be the estimated prior parameters based on Eq. (15), and alg = alg(θ∗) and alg′ = alg(θ̂∗) be oracle
alg and alg instantiated by the estimated prior in a task after m0 exploration tasks, respectively. Then for any ε there is a
constant C such that if m0 ≥ C|A|2 log(|A|/δ)

ε2 , we know

E[µ(Âalg)− µ(Âalg′)] ≤ 2γnε

with probability at least 1− δ.



Proof of Corollary 5.1. By Theorem 4.1 from Simchowitz et al. (2021), we know if m0 ≥ C|A|2 log(|A|/δ)
ε2 , then

TV(Pθ∗ || Pθ̂∗) ≤ ε with probability 1 − δ. Now, as Bernoulli rewards with beta Priors are bounded by 1, then by Theo-
rem 4 we get the result replacing B with 1.

Corollary 5.1 (Frequentist Meta Simple Regret, Bernoulli). Let alg be a TS algorithm that uses the method of moments described
and detailed in Appendix D, to estimate the prior parameters with m0 ≥ C|A|2 log(|A|/δ)

ε2 exploration tasks (explore-then-commit).

Then the frequentist meta simple regret of f-metaSRM satisfies SR(m,n, Pθ∗) = O
(
2mnε+m

√
|A| log(n)

n +m0

)
, form ≥ m0

with probability at least 1− δ.

Proof of Corollary 5.1. The frequentist meta simple regret decomposes in three terms. As Bernoulli is a 1-bounded distribution,
the m0 term is an upper bound on the simple regret of the exploration tasks. Then for the rest of the tasks, we can use the
following decomposition

SR(m,n, Pθ∗) =

m∑
s=1

Eµs∼Pθ∗ [µs(A
∗
s)− µs(Âalgs

)]

=

m∑
s=1

Eµs∼Pθ∗ [µs(A
∗
s)− µs(Âalg∗)] + E[µs(Âalg∗)− µs(Âalgs

)]

where alg∗ is the oracle algorithm. Now by Proposition 2 and a problem-independent cumulative regret bound of TS (Agrawal
and Goyal 2013), (Lattimore and Szepesvári 2020, Theorem 36.1), we can bound the first term by O(m

√
|A| log(n)/n). The

second term is bounded based on Corollary 20 by
∑m
s=1 2nγε = 2mnγε for a γ-Monte Carlo algorithm. For TS γ = 1.

E.4 Proofs of Frequentist Linear Bandits
In this section we extend the results of Simchowitz et al. (2021) for meta-learning to linear bandits. First note the following result
on the KL-divergence of two Gaussian random variables corresponding to the prior and the estimated prior.

Lemma 21 (Gaussian KL-divergence). If P = N (θ, σ2
0Id) and P̂ = N (θ̂, σ2

0Id) then

KL(P || P̂ ) =
1

2σ2
0

‖θ̂ − θ‖22 (19)

This is a special case of Lemma 17. Lemma 21 along with Pinsker’s inequality (Lemma 16), implies that we need to design an
estimator such that the RHS of Eq. (19) is bounded.

Lemma 22. Consider a Gaussian prior P∗ = N (θ∗, σ
2
0Id) and consider the setting of Section 5.2, then

(µ1, a1, y1,1), · · · , (µ1, ad, y1,d)

(µ2, a1, y2,1), · · · , (µ1, ad, y2,d)

...
(µm0

, a1, ym0,1), · · · , (µ1, ad, ym0,d)

for some m0 ≤ m be random variables such that

µs
i.i.d∼ P∗, ys,i|(µs, ai)

i.i.d∼ N (a>i µs, σ
2)

and finally define

θ̂∗ := V −1
m0

m0∑
s=1

d∑
i=1

aiys,i .

where again Vm0
:= m0

∑d
i=1 aia

>
i is the outer product of the basis.

Then for any δ ∈ (2e−d, 1)

‖θ − θ̂‖2 ≤ λ−1
d

(
d∑
i=1

aia
>
i

)(
d

M3
log(2/δ)

d∑
i=1

σ2
i

)1/4

with probability at least 1− δ.



Proof. We can write ys,i = a>i θ∗ + a>i ξs,2 + ξs,1 where ξs,1 ∼ N (0, σ2) and ξs,2 ∼ N (0, σ2
0Id) are independent. Now by an

Ordinary Least Squares estimator we constructs the estimator as follows

θ̂∗ = V −1
m0

m0∑
s=1

d∑
i=1

aiys,i

and

E[θ̂∗] = E[V −1
m0

m0∑
s=1

d∑
i=1

ai(a
>
i θ∗ + a>i ξs,2 + ξs,1)]

= E[V −1
m0

(Vm0θ∗ +
∑
s,i

aia
>
i ξs,2 + asξs,1)]

= θ∗ +
∑
s,i

E[V −1
m0
aia
>
i ξs,2] +

∑
s,i

E[V −1
m0
aiξs,1]

= θ∗ +
∑
s,i

V −1
m0
aia
>
i E[ξs,2] +

∑
s,i

V −1
m0
aiE[ξs,1] = θ∗

Now we bound ‖θ̂∗ − θ∗‖2 as follows

‖θ̂∗ − θ∗‖2 = ‖V −1
m0
Vm0(θ̂∗ − θ∗)‖2

= ‖V −1
m0

(∑
s,i

ai(a
>
i θ∗ + a>i ξs,2 + ξs,1)− Vm0

θ∗

)
‖2

= ‖V −1
m0

∑
s,i

ai(a
>
i ξs,2 + ξs,1)‖2

≤ ‖V −1
m0
‖2‖

∑
s,i

ai(a
>
i ξs,2 + ξs,1)‖2

Now note that ‖V −1
m0
‖2 is the square root of the largest eigenvalue of V −1

m0
V −1
m0

which since Vm0
is positive definite (by

assumption), it equals λ−1
d (Vm0) = 1

m0
λ−1
d (
∑d
i=1 aia

>
i ). Also, Zs,i = ai(a

>
i ξs,2 + ξs,1) is a vector with independent

σi :=
(√

σ2
0‖ai‖42 + σ2‖ai‖22

)
-sub-Gaussian coordinates (by independence of ξs,1 and ξs,2). We know Zs,i’s are independent

since the chosen arms are fixed. Then Z =
∑m0

s=1

∑d
i=1 Zs,i ∈ Rd is a vector with (

√
m0

∑d
i=1 σ

2
i )-sub-Gaussian coordinates

and we know

‖
∑
s,i

ai(a
>
i ξs,2 + ξs,1)‖2 = ‖Z‖2 =

√√√√ d∑
l=1

Z2
l

where Zl is the l’th coordinate of Z. Therefore, by Bernstein’s inequality (Theorem 2.8.1 of Vershynin (2018)) we know

P(

d∑
l=1

Z2
l ≥ t) ≤ 2 exp(−min{ t2

dm0

∑d
i=1 σ

2
i

,
t√

m0

∑d
i=1 σ

2
i

})

Thus ‖Z‖2 ≤ (dm0

∑d
i=1 σ

2
i log(2/δ))1/4 with probability at least 1− 2 exp(−min{log(2/δ),

√
d log(2/δ)}) which is 1− δ

if δ ≥ 2 exp(−d) and 1-exp(−
√
d log(2/δ)) otherwise. Therefore

‖V −1
m0
‖2‖

∑
s,i

ai(a
>
i ξs,2 + ξs,1)‖2 ≤

1

m0
λ−1
d (

d∑
i=1

aia
>
i )(dm0 log(2/δ)

d∑
i=1

σ2
i )1/4

= λ−1
d

(
d∑
i=1

aia
>
i

)(
d

M3
log(2/δ)

d∑
i=1

σ2
i

)1/4

with the probability discussed above.



Next, we prove the following for explore of Eq. (10).
Theorem 6 (Linear Bandits Frequentist Estimator). In the setting of Section 5.2, for any ε and δ ∈ (2e−d, 1), if n ≥ d and

m0 ≥
(

d log(2/δ)
∑d
i=1 σ

2
i

2σ0λ4
d(

∑d
i=1 aia

>
i )ε4

)1/3

, then TV(Pθ∗ || Pθ̂∗) ≤ ε with probability at least 1− δ.

Proof of Theorem 6. By Pinsker’s inequality (Lemma 16) and Lemma 21 we know

TV(Pθ∗ || Pθ̂∗) ≤
√

1

2
KL(Pθ∗ || Pθ̂∗)

=
1

2σ0
‖θ̂∗ − θ∗‖2 (20)

Then by Lemma 22 we know for

m0 ≥

(
d log(2/δ)

∑d
i=1 σ

2
i

2σ0λ4
d(
∑d
i=1 aia

>
i )ε4

)1/3

bounds the RHS of Eq. (20) with the corresponding probability.

The following statement immediately follows.
Corollary 23 (Frequentist Relative Simple Regret, Linear Bandits). Let alg be an γ-Monte Carlo algorithm and θ̂∗ be
the estimated prior parameter in Eq. (10), and alg = alg(θ∗) and alg′ = alg(θ̂∗) be the be the oracle alg algorithm
and alg instantiated by the estimated prior in a task after m0 exploration tasks, respectively. Then for any ε if m0 ≥(

d log(2/δ)
∑d
i=1 σ

2
i

2σ0λ4
d(

∑d
i=1 aia

>
i )ε4

)1/3

, we know

E[µ(Âalg)− µ(Âalg′)] ≤ 2γnε

(
diam(Eθ∗ [µ]) + σ0

(
8 + 5

√
log

|A|
min(1, 2γnε)

))
with probability 1− δ for δ ∈ (2e−d, 1).

Now we can bound the meta simple regret as follows.
Corollary 5.3 (Frequentist Meta Simple Regret, Linear Bandits). In Algorithm 2, let alg be a TS algorithm and use Eq. (10) for

estimating the prior parameters with m0
3 ≥

(
d log(2/

√
δ)

∑d
i=1 σ

2
i

2σ0λ4
d(

∑d
i=1 aia

>
i )ε4

)
. Then the frequentist meta simple regret of Algorithm 2 is

Õ
(

2m1/4n diam(Eθ∗ [µ]) +md3/2 logK√
n

)
with probability at least 1− δ.

Proof. First assume we have m0 exploration tasks, for m ≥ m0. We decompose the frequentist meta simple regret in three
terms. As Gaussian is a σ-Sub-Gaussian distribution, then by Hoeffding’s inequality we can upper bound the simple regret of the
exploration tasks as follows. We know

|µ(Âalgs
)− µ(Â∗s)| ≤

√
σ2

0 log(
2√
δ

)

with probability at least 1−
√
δ. Then for the rest of the tasks, we can use the following decomposition

SR(m,n, Pθ∗) =

m∑
s=1

Eµs∼Pθ∗ [µs(A
∗
s)− µs(Âalgs

)]

=

m∑
s=1

Eµs∼Pθ∗ [µs(A
∗
s)− µs(Âalg∗)] + E[µs(Âalg∗)− µs(Âalgs

)]

where alg∗ is the algorithm that knows the correct prior Pθ∗ . Now by Proposition 2 and a problem-independent cumulative
regret bound of TS for linear bandits (Abeille and Lazaric 2017), we can bound the first term by O(md3/2

√
n logK/n) =

O(md3/2 logK√
n

). The second term is bounded for any γ-Monte Carlo algorithm based on Corollary 23 by

m∑
s=1

2γnε

(
diam(Eθ∗ [µ]) + σ0

(
8 + 5

√
log

|A|
min(1, 2γnε)

))

≤ 2mnγε

(
diam(Eθ∗ [µ]) + σ0

(
8 + 5

√
log

|A|
min(1, 2γnε)

))
.
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Figure 4: Learning curves for MAB Gaussian bandit experiments. The error bars are the standard deviation of the 100 runs.
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Figure 5: Learning curves for linear Gaussian bandits experiments. The error bars are the standard deviation of the 100 runs.

with probability at least 1−
√
δ if m0 ≥

(
d log(2/

√
δ)

∑d
i=1 σ

2
i

2σ0λ4
d(

∑d
i=1 aia

>
i )ε4

)1/3

. Therefore, putting these together we get

SR(m,n, P∗) = O

(
2mnγε

(
diam(Eθ∗ [µ]) + σ0

(
8 + 5

√
log

|A|
min(1, 2γnε)

))

+m
d3/2 logK√

n
+m0

√
σ2

0 log(
2√
δ

)

)

with probability 1− δ. Now note that γ = 1 for TS.

Note that ε ∝ m
−3/4
0 , and we know

∑m
s=1 s

−3/4 = O(m1/4). Therefore, if the exploration continues in all the tasks, the

regret bound above becomes Õ
(

2m1/4n diam(Eθ∗ [µ]) +md3/2 logK√
n

)
.

F Experimental Details and Further Results

We used a combination of computing resources. The main resource we used is the USC Center for Advanced Research Computing
(https://carc.usc.edu/). Their typical compute node has dual 8 to 16 core processors and resides on a 56 gigabit FDR InfiniBand
backbone, each having 16 GB memory. We also used a PC with 16 GB memory and Intel(R) Core(TM) i7-10750H CPU.

Figs. 4 and 5 show the results for n = 20 with m = 200 tasks for MAB and m = 20 tasks for the linear experiments, where
σq = 1, σ0 = 0.1, and σ = 1. Note that these are shorter tasks than in Section 7 and thus harder.

In Fig. 4, note that increasing K tightens the relative gap between TS and OracleTS as the tasks become harder and all of
the algorithms act closer to each other.

For Fig. 5, note that the gap between OracleTS and TS is more apparent than in Fig. 4. This is probably because the
prior over the mean parameter carries more information here as it determines the whole mean reward for K arms using only d
dimensions. f-metaSRM takes a while to outperform TS as its estimation takes a while to converge to the true prior.

Fig. 6 shows further experiments for linear Gaussian bandits with larger K compared to Section 7.2, and K = 10d. The same
setting is used.
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Figure 6: Linear Gaussian bandits experiments with K = 10d.

In the next experiment, we evaluate the algorithms based on their average per-task simple regret under a frequentist setting,
i.e., the prior is fixed over runs. For Gaussian MAB, we use θ∗ = [0.5, 0, 0, 0.1, 0, 0] with a block structured covariance so that
arms 1, 2, 3 are highly correlated, and analogously for arms 4, 5, 6. The rewards are Gaussian with variance 1, which is known to
all learners. For the linear case, we set the prior to be N (1,Σ0) where Σ0 is a scaled-down version of the block diagonal matrix
used for the Gaussian MAB case.

Fig. 7 shows the cumulative average per-task simple regret of our meta learning algorithms for Gaussian and linear Gaussian
for larger number of tasks. MisTS is a TS that uses the misspecified prior of N (0, I). Also, metaTS-SRM is the MetaTS
algorithm (Kveton et al. 2021) turned into a SRM algorithm. We can observe that our algorithms asymptotically achieve smaller
meta simple regret over the tasks and learn the prior. Notice that f-metaSRM has the same performance as metaTS-SRM after
convergence. This is expected as its prior estimation is updated after each task, the same as metaTS-SRM.
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Figure 7: Cumulative average per-task simple regret.

F.1 Real-world Experiment
We experimented with the MNIST3 dataset, in the same setting as in Appendix E.2 of Basu et al. (2021). This bandit classification
problem is cast as a multi-task linear bandit with Bernoulli rewards. We have a sequence of image classification tasks where one
class is selected to be positive. In each task, at every round, K random images are selected as the arms and the goal is to identify

3Accessed at https://www.tensorflow.org/datasets/catalog/mnist



the arm corresponding to an image from the positive class. The reward of an image from the selected class is Bernoulli with a
mean of 0.9. For all other classes, it is Bernoulli with mean of 0.1.

We ran several experiments and present one representative experiment below. When digit 0 is selected as the positive class,
the simple regret at the end of m = 10 tasks, each with length n = 200, is shown in Fig. 8. Here K = 30 and the experiment
is averaged over 100 random runs. We observe that B-metaSRM outperforms the benchmarks. The BAI algorithm LinGapE
yields linear simple regret. f-metaSRM outperforms TS but still seems to yield linear simple regret. A larger number of tasks
could help confirm this.

Fig. 9 illustrates the posterior of each algorithm from the best digit (which is 0 here). As we can see B-metaSRM quickly
catches up with the OracleTS and grasps the correct posterior. However, other algorithms fail to do it quickly enough and even
get trapped in a false posterior. As we can see f-metaSRM also fails which shows its linear estimation is not robust to model
misspecification and underperforms in a non-linear environment like this setting.
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Figure 8: Cumulative average per-task simple regret for the MNIST
experiment.
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