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ABSTRACT

Federated Learning (FL) is a popular algorithm to train ma-
chine learning models on user data constrained to edge devices
(for example, mobile phones) due to privacy concerns. Typ-
ically, FL is trained with the assumption that no part of the
user data can be egressed from the edge. However, in many
production settings, specific data-modalities/meta-data are lim-
ited to be on device while others are not. For example, in
commercial SLU systems, it is typically desired to prevent
transmission of biometric signals (such as audio recordings of
the input prompt) to the cloud, but egress of locally (i.e. on
the edge device) transcribed text to the cloud may be possible.
In this work, we propose a new algorithm called Partial Feder-
ated Learning (PartialFL), where a machine learning model is
trained using data where a subset of data modalities or their in-
termediate representations can be made available to the server.
We further restrict our model training by preventing the egress
of data labels to the cloud for better privacy, and instead use
a contrastive learning based model objective. We evaluate
our approach on two different multi-modal datasets and show
promising results with our proposed approach.

1. INTRODUCTION

Existing FL paradigms typically assume a uniform set of re-
strictions applied to all available data modalities. With this
framework of uniform restrictions, depending on available per-
missions on the data, we maybe allowed to move all of them
to a server for central model training or we maybe required to
retain all data on the user devices (hereafter referred to as edge
devices) for a federated model training. However, in many real
world settings, a subset of data modalities may carry looser
constraints allowing easy egress of such data to a server. As
an example, consider a machine learning model built using
medical data. In this case, certain biometric modalities such
as the patient’s speech recordings, electrocardiogram (ECG),
electroencephalogram (EEG), continuous heart rate (HR) mea-
surements are likely to be protected more strictly compared
to anonymized doctor’s notes and reports. This is because
biometric data are associated with Personal Identifiable Infor-
mation (P.I.I) [1], and sharing these can raise privacy concerns

leading to a number of legislations to protect them, including
the recently introduced California Biometric privacy law [2]
and Illinois Biometric Information Privacy Act [3].

Federated learning has been studied extensively in uni-
modal settings while multi-modal federated learning has re-
cently gained attention from several works [4, 5]. However,
existing learning paradigms do not support efficient and large
scale training with distributed data modalities as described
above, leading ML practitioners to choose the more restric-
tive setting of keeping all data on edge devices for federated
model training. This brings with it all the challenges typical
for federated learning: i) restricted model sizes due to small
computational power on edge and ii) gradient drift issues due
to heterogeneity in data, thus leading to lower performance
compared to centralized training.

In this work, we propose to address this gap by building
a "Partial" Federated Learning model (PartialFL), where a
model is trained using distributed data for which some modali-
ties are shared centrally while other modalities and the class
labels are only available on the edge device. In addition to the
distributed training, a closely related objective is to utilize the
shared modalities to improve on FL model performance by
addressing the data heterogeneity challenge. Our approach is
related to the existing paradigm of vertical federated learning
[6], where features for same set of samples maybe separated
among different edge devices; in our case, we similarly have
portions of data distributed between the central server and the
edge devices, but the key difference in our work is that here
we assume entirely different modalities of data exist on the
edge and hence we can train a new artifact, such as an edge
specific text encoder or acoustic signal encoder. Our main
contributions in this work are:

• We present a new Federated Learning algorithm to train
a machine learning model when data modalities are split
among different devices

• We evaluate our algorithm on two different data sets
present key results showing improvements in model
performance

We also present additional results on a new dataset in the sup-
plemental material along with various ablation results, high-



lighting the key areas of improvement introduced by our ap-
proach.

2. APPROACH

In a multi-modal FL setting, we can categorize each data
modality into either the protected non-shareable group or
the less restricted shareable group based on whether they are
permitted to be egressed to the central server. In this work,
without loss of generalization, we assume that anonymized
text data are shareable with the remote server (but note that
our treatment holds for any other modality that is deemed
shareable), while holding other modalities in the non-shareable
group on the edge devices. For further protection against
information leakage, we map the raw text data into latent
representations using a pre-trained language models such as
DistilBERT [7], and only share these representations with the
server in all our experiments. The benefit of training with
shareable data in the server is that we can now train a larger
model due to increased availability of compute in the server,
and also extract a more robust representation when compared
to the model trained on an unbalanced local data set. We
assume availability of labels on edge for local modal training,
but in their absence we can leverage user feedback similar to
[8], which we defer for future work.

2.1. Outline

We consider a decentralized setup with K edge devices and
a given multi-modal data set D. For ease of exposition, we
describe our approach using text and audio data, but note
that it can be applied to any multi-modal setting. As noted
in the previous section, latent representations of text data is
assumed shareable but no form of audio data is shareable.
We denote Dk : {Xk

A,i,X
k
T,i,y

k
i }

nk
i=1 as the multi-modal

dataset from kth edge device containing audio, text and la-
bels respectively. nk is the size of the data set in Dk, with
D = {D1,D2, ...,DK} and the total number of utterances in
D is N =

∑K
k=1 nk.

PartialFL follows a structure similar to regular FL but with
one key modification: we maintain additional models on both
the server and edge devices trained entirely on the shareable
modality. We further augment model training by using cross
device and cross-modality contrastive loss objectives. These
are described in more detail below.

2.2. Learning Components

Given the multi-modal setting described in the last section, the
PartialFL framework consists of three model components as
shown in Figure 1: the server model Fs(·), the global model
Fg(·), and the local models Fk(·) where k ∈ {1, 2, ...,K}.
The server model Fs(·) exists in the server as an encoder
which is trained on the shareable data (XT) to generate em-

beddings. In our example, we define the server-side textual
embedding as zT. Since we do not have training labels at the
server to train a classifier, the learning objective of Fs(·) is
to reduce the distance between the server generated textual
embedding zT with the local textual embedding z′T.
The global model Fg(·) is a typical FL model and is trained
in a distributed manner on the non-shareable data on edge,
followed by a global aggregation in the server using typical
FL algorithms, like FedAvg [9] or FedProx [10]. The global
model can be either audio only or a multi-modal global model.
The objective is to learn Fg(·) parameterized by θg over the
data setD without accessing XA from edge devices. Since not
every edge device may have every modality, training the global
model can further help those devices with missing modalities.

Further, since the edge-side training of this model can suf-
fer from gradient drifts [11], we add a cross-modal alignment
objective to decrease the distance between the audio embed-
ding zA (or multi-modal embedding zM) and zT. This idea is
similar to the model contrastive loss presented in [12].
The local model Fk(·) is only available in the kth edge device.
Unlike the server model Fs(·), here we have access to data
labels so the local model includes a classifier trained using
cross-entropy loss over the text modality. Note that the full
Fk(·) is not shareable since the server would then be able to
infer local labels using Fk(·) as XT is already uploaded to the
server. Instead, the edge device only sends the local textual
embeddings z′T generated from the encoder layer of Fk(·).
Similar to training the global model, over-fitting can occur
easily while training this model, so we add an embedding
alignment loss to minimize the distance between the local
embeddings z′T from the server generated embeddings zT.

The key intuition behind PartialFL is that by iteratively
aligning server side representations of the shared text modality
(zT) with different client side representations z′T on the server,
and by aligning the edge side text and audio representations
with the realigned zT, we are improving model robustness to
extreme data heterogeneity.

2.3. Cross-modal Alignment

Cross-modal alignment is a popular learning task when work-
ing with multiple modalities [13, 14]. This learning task fo-
cuses on aligning embeddings of the same instance across the
different modalities. More concretely, we compute modality
specific representations denoted as zA, zT and zM for the
audio embedding, text embedding and the multi-modal embed-
ding respectively. Cross-modal alignment in PartialFL aims to
push these embeddings close to each other if they belong to
the same data sample, and increase the distance between them
otherwise.

Similar to previous work [15], a positive pair is defined
as zA (or zM) and zT from the same data sample. On the
other hand, negative pairs are constructed from different data
samples. More precisely, we define intra-modal negative



Fig. 1. Different models in the PartialFL learning architecture.

pairs as the embeddings from the same modality but different
data samples. For instance, (zkA,i, z

k
A,j) is a negative pair if

i ̸= j. Further, we define inter-modality negative pairs
as embeddings from different modalities and data samples.
An example of the inter-modality negative pair is (zkA,i, z

k
T,j)

where i ̸= j. With the audio global model, we can define the
loss term LT→A

i for data Xk
i in a training batch of size B with

a temperature parameter τ as:

LT→A
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2.4. Embedding Alignment at Server and Local models

As noted before, to prevent over-fitting, we aim to decrease the
distance between the local and server side textual embeddings
z′T and zT using the contrastive loss. We define a positive
pair as z′T and zT from the same data sample, and a negative
pair from different samples. We can then write the server side
contrastive loss LL→S

i as:

LL→S
i = − log

e(z
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We define the edge side loss LS→L
i similarly.

2.5. Learning Algorithm

Unlike training centralized contrastive models, PartialFL
needs to optimize the server model and the edge models
asynchronously. To optimize the edge model and the server
model in such manner, we use alternating minimization (AM)
similar to FedGKT [16], where we alternatively fix one model
and optimize the other. The full algorithm is presented in
Appendix C.

2.6. Implementation

We use PyTorch to implement the PartialFL and the other
baselines. In this study, we experiment with two popular FL

algorithms: FedAvg and FedProx. We fix the weight of the
proximal loss in FedProx as 0.01. We fix the number of edge
devices as 200. When experimenting with the Food-101 data
set, we choose the edge sample rate in each training round as
10%. On the other hand, we regard each speaker as a separate
client in the emotion recognition task as it provides a natural
data split in the FL. Since there are fewer clients in emotion
recognition data sets, we decide to use an edge sample rate of
50% in each global training round.

2.7. Hyper-parameters

We set the local training batch size as 16 and the local training
epoch as 1 in all FL algorithms. We set the learning rate as
0.0001 and 0.0005 in training the emotion recognition task
and Food-101 classification tasks, respectively. We apply the
Adam optimizer in all experiments. The global training round
is 150 in the emotion recognition task and 200 in the Food-101
data set. In PartialFL, we explore the temperature parameter
τ ∈ {0.05, 0.1, 0.2}. We tune the weight β in both Lglob and
Lloc in {0.001, 0.01} in training emotion recognition models.

3. EXPERIMENTS

We evaluate the PartialFL algorithm on two datasets from
the Speech Emotion Recognition task (SER): IEMOCAP [17]
which contains utterances from ten subjects expressing various
categorical emotions, and MSP-Improv [18] which contains
multi-modal emotion recognition data set collected from 12
speakers. Additional details on all our datasets and models
are provided in Appendix D. We also present results on im-
age classification task from the Food101 dataset along with
detailed ablation studies in Appendix E.

3.1. Baselines

3.1.1. Centralized

Here we assume that all data modalities are available in one
central server for training in both uni-modal and multi-modal
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Fig. 2. Model performance for the IEMOCAP and MSP-Improv data set. PartialFL considerably outperforms FL and SL and has
performance close to the Centralized upper bound.

settings. Since we are no longer limited by edge size com-
putational power, this acts as an upper limit for the model
performance.

3.1.2. Split Learning

We also implemented split learning to compare against our
model. We set model size to be same as in the centralized
baseline, and it serves as an upper bound for decentralized
training. However, split learning incurs significant communi-
cation costs in practice compared to typical federated learning
(refer to Section 3.3 in [19] for a comparison of training times
for both algorithms).

3.1.3. Federated Learning

Finally, we also compare against a typical FL baseline. We
experiment with both FedAvg and FedProx [10] variants of
FL, and set the global model size to be same as PartialFL for a
fair comparison.

4. RESULTS

We report unweighted average recall (UAR) score to measure
the model performance. We use each recording session as a
separate test fold, and repeat the training 5 and 6 times on the
IEMOCAP and the MSP-Improv data sets respectively.

4.0.1. Uni-model global model (audio only)

Full results from our experiments are shown in Figure 2; Par-
tialFL showed stronger results than both FedProx and FedAvg

in both datasets, but especially so in IEMOCAP, where we
observed nearly 4.00% improvement. Further, PartialFL ap-
proaches the performance of the centralized and split learning
baselines by leveraging the additional data modality leading
to improved robustness, while still retaining the benefits of
federated learning.

4.0.2. Multi-modal global model (audio+text)

In this setting, we observed stronger performance in the cen-
tralized and SL baselines, with SL surprisingly outperforming
centralized training in both data sets. However, similar to the
previous experiments, PartialFL consistently outperforms both
FL baselines, with overall improvement in the range of 1.0-
2.0%, highlighting the robustness of our proposed approach.

5. CONCLUSION

We propose a novel multi-modal Federated Learning frame-
work called PartialFL with a goal of addressing the heterogene-
ity challenge in FL and improve the final model performance.
Unlike traditional FL, PartialFL allows some modalities to
be shared with the server which enables us to train a robust
embedding network over the shared modality in the server. We
experiment with two multi-modal data sets and report strong
performance against three baselines. We observe that PartialFL
consistently outperforms traditional FL in all tasks, and ap-
proaches the performance of centralized models, as well as
split learning without any of its communication overhead or
straggler problems. Future work includes deploying PartialFL
in real world applications to further evaluate its efficacy.
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A. LIMITATIONS AND FUTURE WORK

The primarily limitation of our proposed approach is the added
computation needed to train local and server models when
compared to typical FL model training. Further, since we
use pretrained models to extract sentence and image represen-
tations, we maybe inadvertently exposed to any underlying
dataset biases in these models. We encourage downstream
applications of this approach to suitably evaluate the model
performance against different demographic cohorts before de-
ployment.

Another area of concern is the privacy risk associated with
sharing the representation of a modality to the remote server.
Many recent studies have demonstrated that FL is vulnerable to
privacy attacks such as data reconstruction attacks [20], label
inference attack [21], and property inference attack [22]. In
our experiments, we employ preliminary strategies to protect
privacy by sharing representations of the shareable modality in-
stead of raw data as well as only sharing representations from
modalities without any biometric information (text). Further,
we also place a strong constraint in our model training whereby
we do not share class labels with the server. Nevertheless, it
is still possible that some of aforementioned privacy attacks
can achieve high success rates using just the shareable repre-
sentations. For instance, the privacy attacker may formulate
contrastive learning objectives between the model updates and
shared representations to implement more effective inference
attacks. Our future works plan to extensively investigate the
privacy risks associated with sharing modalities in FL.

B. RELATED WORK

Several algorithms have been developed to train with dis-
tributed data with disjoint modalities stored on different de-
vices, but each of these have specific drawbacks which we
highlight here.

While we can assume that all modalities are restricted to
the edge devices and use traditional FL, this poses challenges
for training on low power devices and in cases of high data het-
erogeneity. Split learning (SL) [23] is one way to address these
concerns by splitting the entire ML model into multiple smaller
parts and distributing them on both the central server and edge
devices. Each model part can further be constrained to a spe-
cific data modality. In a typical SL setting, the first edge device
initializes the training by performing forward propagation on
local data, and then uploads the smashed data (outermost ac-
tivations of the local model) and ground-truth labels to the
central server. In the next step, the central server continues
forward propagation from the smashed data using a server-side
model. Then, the server starts back-propagation on its model
and sends the gradients at the cut layer back to the edge for
local back-propagation. After finishing back-propagation at
the first edge device, it shares the trained model to the next
edge device, and the training process continues. While this

theoretically allows us to train large multi-modal models, the
main drawback here is the sequential training process which
makes it considerably slower than FL. Further, there is a sig-
nificant communication overhead for each model update, since
we need to propagate the intermediate activations from edge to
server in the forward pass and then back in the backward pass,
for each data sample and on all the edge devices. In addition,
SL can also suffer from server straggler problem as the train-
ing process requires frequent communications between the
server and the edge devices. In our work, we avoid all of these
problems by training device specific encoders until conver-
gence which are then shared with other devices/the centralized
server more efficiently (in terms of both communication cost
and time). We assume availability of labels on edge for lo-
cal modal training, but in their absence we can leverage user
feedback similar to [8].

Federated Group Knowledge Transfer (FedGKT) [16] was
originally proposed to address the challenges of training with
non-IID datasets; it can also be applied to train a large multi-
modal model in a distributed manner since it allows us to
train device/modality specific encoders till convergence which
are then aggregated centrally using knowledge distillation.
However, FedGKT assumes that edge specific labels are also
shared with the server which enables them to train a server side
classifier till convergence, but these labels may not always be
available, or not permitted to be shared freely with the server.
For example, patients may prefer not to share their diagnosis
information (class labels) outside the hospital. In our work,
we therefore avoid label sharing entirely by using a contrastive
objective to train the device specific encoders, and show strong
model performance without sharing any edge specific labels
with the central server.

Split Federated Learning (SFL) [19] is a recent work which
attempts to bridge SL and FL. However, this also carries heavy
communication costs due to the combined overheads of split
learning and federated learning, which limits its applications
to practical settings. Further, in our experiments, they do not
demonstrate any gains in accuracy compared to our baselines.

Finally, while federated learning has been studied exten-
sively in uni-modal settings, multi-modal federated learning
has recently gained attention from several works [4, 24, 25, 5].

C. LEARNING ALGORITHM

Detailed training steps are as follows:
Step 1 (server): At the beginning of each global round, the
server samples the edge devices and sends the global model
Fg(·) parameterized by θg and zT to each device.
Step 2 (edge): After receiving θg and the server side embed-
dings zkT , the edge device trains the global Fg(·) on its local
image data XI. The learning objective is a combination of
cross-entropy loss LCE and the cross-modal contrastive loss
LT→I . We use the weight parameter β to set the importance
of the cross-modal contrastive loss. The combined loss for the



image global model is shown below:

Lglob = LCE(Fg(θg;X
k
I ), y

k) + βLT→I(zI, zT) (3)

Step 3 (edge): Next, the edge device trains its local model
using XT. Here, the training objective is a weighted sum
between the cross-entropy loss LCE and the contrastive loss
LS→L.

Lloc = LCE(Fk(θk;X
k
T ), y

k) + βLS→L(z′T, zT) (4)

Step 4 (server): Finally, the server receives the trained global
model and edge generated embeddings z′T. The server then
aggregates the global model using weighted average and also
trains the server side model Fs(·) using the contrastive loss
LL→S :

We summarize the full training algorithm in Algorithm
1 and a pictorial representation of the same in Figure 3 in
Appendix C.

Figure 3 shows a pictorial representation of our full learn-
ing algorithm, which is listed in detail in Algorithm 1.

D. EXPERIMENT DETAILS

D.1. Dataset

D.1.1. IEMOCAP

The IEMOCAP database [17] was collected using multi-modal
sensors to capture motion, audio, and video of human inter-
actions. The original corpus contains 10,039 utterances from
ten subjects (five male and five female) expressing various
categorical emotions from improvised and scripted scenarios.
Following [26], we focus on the improvised sessions. We use
the four most frequent emotion labels: neutral, sad, happi-
ness, and anger for training the SER model due to the data
imbalance in other labels.

D.1.2. MSP-Improv

The MSP-Improv corpus [18] is a multi-modal emotion recog-
nition data set captured from improvised scenarios. The data
is collected from 12 speakers (six male and six female) and in-
cludes audio and textual data of utterances spoken in different
recording conditions.

D.1.3. UPMC Food101

The UPMC Food101 dataset [27] consists of web pages with
textual recipe descriptions for 101 food labels automatically
retrieved online. Each page was matched with a single image,
where the images were obtained by querying Google Image
Search for the given category. Examples of food labels are Filet
Mignon, Pad Thai, Breakfast Burrito and Spaghetti Bolognese.
The web pages were processed with html2text1 to obtain the
raw text.

1github.com/aaronsw/html2text

Algorithm 1 PartialFL
1: Server Initialize: θ0g , θs
2: for k ∈ {1, 2, ...,K} do
3: Client Initialize: θk
4: Upload Xk

T to server
5: end for
6: Server Executes:
7: for k ∈ {1, 2, ...,K} do
8: zkT ← Fs(θs;X

k
T)

9: end for
10: for Each round t = 0, ..., T − 1 do
11: ## Step 1: Sample and distribution
12: Sample edge devices S ∈ {1, 2, ...,K}
13: Distribute θtg and zkT
14: ## Step 2 and 3: Client training
15: for Each edge device k ∈ S in parallel do
16: θtg,k, θk ← ClientTrain(θtg ,θk,zkT,Dk)
17: z′kT ← Fk(θk;Dk)
18: Upload θtg,k, z

′k
T to server

19: end for
20: ## Step 4.1: Server trains θs
21: for Each edge device k ∈ S do
22: θs ← ServerTrain(θts, z′kT , Xk

T )
23: end for
24: for k ∈ {1, 2, ...,K} do
25: zkT ← Fs(θs;X

k
T)

26: end for
27: ## Step 4.2: Server aggregates θtg,k
28: θt+1

g ← 1
|S|

∑
k∈S θtg,k

29: end for
30: function CLIENTTRAIN(θg , θk , zT , D)
31: for Local epoch e from 0 to E − 1 do
32: for Iteration i from 0 to I − 1 do
33: Sample mini-batch l from D
34: θg ← θg − η∇θgLglob(θg;Dl, zlT)
35: θk ← θk − η∇θkLlocal(θk;Dl, zlT )
36: end for
37: end for
38: return θg , θk, z′T
39: end function
40: function SERVERTRAIN(θs , z′T, XT)
41: for Iteration i from 0 to I − 1 do
42: Sample mini-batch l from XT

43: θs ← θs − η∇θsLserver(θs;X
l
T, z

′l
T)

44: end for
45: return θs
46: end function



Fig. 3. Training steps of the PartialFL framework. Training steps 1, 2, 3, and 4 are repeated in each global training round.

Table 1. Statistics of data sets used in this study.

Train Dev Test

Food101 58545 6556 21695

Neu. Hap. Sad Ang.

IEMOCAP 1099 947 608 289
MSP-Improv 2072 1184 739 585

D.2. Data Statistics

Data statistics are shown in Table 1.

D.3. Models and Features

D.3.1. Audio

The model we use for the SER task is similar to [28]. The
network has 2 main components: an embedding network and
an emotion classifier. The embedding network of the audio
data is a set of convolution layers proposed in [29], followed
by a Gated Recurrent Unit (GRU) layer [30]. We obtain an
utterance-level audio representation by applying mean pooling
to the output of the GRU layer. We then use a projection
layer to compute the audio embedding. Finally, the emotion

Table 2. Ablation study: comparisons between PartialFL and
FL on the Food101 data set under different data heterogeneity
settings.

Classification Exp. Alpha Top5
Modality Setting Accuracy

Image

FL 1.0 51.08%
PartialFL 53.03%

FL 0.5 48.27%
PartialFL 51.20%

FL 0.1 36.20%
PartialFL 39.54%

Image+Text

FL 1.0 56.04%
PartialFL 58.62%

FL 0.5 52.91%
PartialFL 55.94%

FL 0.1 40.68%
PartialFL 43.74%



Table 3. Ablation study: Impact of missing modalities in
some edge devices; in the Food-101 dataset, the Global model
uses Image modality only and we report Top 5 Accuracy; In
IEMOCAP and MSP-Improv, we use the Audio only Global
model and report UAR.

Dataset α q Scores

Food-101

1.0

100% 58.62%
50% 58.04%
25% 57.58%
0% 56.04%

0.5

100% 51.2%
50% 50.94%
25% 50.31%
0% 48.27%

0.1

100% 39.54%
50% 39.47%
25% 38.65%
0% 36.20%

IEMOCAP -
100% 61.30%
50% 59.37%
0% 56.93%

MSP-Improv -
100% 45.14%
50% 44.97%
0% 43.90%

classifier takes the audio embedding and estimates emotion
labels using a set of dense layers. Inputs to the embedding
network are 80 dimensional Mel filter bank (MFB) features
using 25ms Hamming window with step size of 10ms. We
further apply z-normalization to these features within each
speaker before feeding them to the embedding network.

D.3.2. Image

Similar to the SER model, the image model consists of an
embedding network and a classifier. The image embedding
network is a set of dense layers followed by a projection layer.
We use the image embedding to generate the prediction output.
We use the MobileNetV2 [31] pre-trained model to extract rep-
resentations of raw images which are passed to the embedding
network. We use this model since it is small enough to fit most
edge devices.

D.3.3. Text

For the text model, we use an embedding network which
maps DistilBert [7] sentence representations into a lower-
dimensional text embedding. We use a considerably larger
embedding network (compared to the edge) in our server. The
text model on edge also includes a classifier module (fully

connected layer with an outer softmax layer) to generate pre-
dictions using local text embeddings.

D.3.4. Multi-modal Model

In the multi-modal global model, we concatenate audio (or
image) representations with text representations and pass them
through a projection layer to obtain the multi-modal embed-
ding. The classifier then uses this multi-modal embedding to
generate the predictions for corresponding tasks.

E. ADDITIONAL RESULTS

E.1. Results on UPMC Food-101 dataset

We report top-1 and top-5 accuracies in this data set. Model
performances and sizes for this dataset are shown in Figure 4.

E.1.1. Uni-modal global model (image only)

Firstly, the centralized image model shows the best perfor-
mance, largely thanks to a larger model size. Furthermore,
we can observe that SL consistently yields better performance
than FL. Under FL settings, we find that FedProx outperforms
FedAvg, and the top-5 accuracy of FL baseline is about 4%
higher using the FedProx algorithm when compared with Fe-
dAvg. PartialFL outperforms the FL baseline by 1.95% by
making use of the shared data modality. SL outperforms Par-
tialFL by only 1.76%, but at a significant communication
overhead.

E.1.2. Multi-modal global model (image+text)

Similar to the previous setting, we observe the centralized
multi-modal models showing better performance compared to
other baselines and FedProx outperforms FedAvg in both FL
and PartialFL experiments. Our proposed PartialFL approach
improves the global model performance by 2.58% comparing
to the FL baseline.

E.2. Impact of non-IID settings

In this experiment, we explore how PartialFL performs under
a non-IID setting with data heterogeneity, which is frequently
encountered in most real world FL applications. We simu-
late non-IID edge devices by controlling the α parameter [32]
when creating the data sets, which controls the concentration
of the Dirichlet distribution in allocating proportion of label
samples to each device (so a small alpha corresponds to more
imbalanced data distribution, and hence higher data hetero-
geneity). We perform this experiment only on the Food-101
data set since the speech data sets are small (with each speaker
as a separate edge device). Table 2 presents model compar-
isons between the PartialFL and FL baselines. We only present
results with FedProx, as it showed better performance than
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FedAvg. As expected, performances of both PartialFL and
traditional FL decrease as α value reduces, but PartialFL con-
sistently outperforms FL baselines in all settings. Furthermore,
we observe that the PartialFL provides larger performance im-
provements against FL in non-IID settings (compared to the
IID setting of α = 1.0), by leveraging the shared modality.

E.3. Impact of missing modalities in edge devices

In practice, not every edge device may contain multi-modal
data; for example, in commercial SLU systems, some devices
are designed to only accept audio inputs while others may
accept audio, video and text inputs. In this setting, we eval-
uate performance of PartialFL when the shareable modality
is missing in a subset of edge devices. We define q as the
percentage of the devices with multi-modal data, and we sim-
ulate the case with various values of q. q = 0% indicates the
case where none of the edge devices contain the shareable
modality, and is equivalent to the FL baseline. We explore
q ∈ {0%, 25%, 50%, 100%} and q ∈ {0%, 50%, 100%} in
the Food-101 data set and emotion recognition data sets, re-
spectively. Results are presented in Table 3. In general, we ob-
serve that fewer the number of edge devices with the shareable
data, lower the performance of the global model. However,
this decrease is not substantially large; for example, when
q = 25%, we find that the top-5 accuracy drops by around
1% in the Food-101 data set. These results suggest that Par-
tialFL is robust to missing modalities in some devices and the
performance decrease is not substantial.

E.4. Impact of temperature τ

The temperature parameter τ in the contrastive loss objectives
defines the strength of penalties on the hard negative samples
and often has a substantial impact on the final model perfor-
mance [33]. In this study, we examine its impact on PartialFL.
Table 4 shows performances of the uni-modal global model

Table 4. Ablation study: Impact of temperature (τ ) on the
PartialFL algorithm.

Model (metric) Dataset α τ Score

Image (top-5 acc) Food-101

1.0
0.05 53.03%
0.1 52.67%
0.2 51.95%

0.5
0.05 51.2%
0.1 50.86%
0.2 49.93%

0.1
0.05 39.42%
0.1 39.54%
0.2 39.38%

Audio (UAR)

IEMOCAP -
0.05 60.71%
0.1 61.30%
0.2 60.52%

MSP-Improv -
0.05 44.68%
0.1 44.81%
0.2 45.14%

with different temperature parameters in all the datasets we ex-
plored. As we can see from the table, performance differences
at different temperature values are close to each other (< 1%)
among all values of τ , suggesting that the PartialFL is fairly
robust to this hyper-parameter.
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