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ABSTRACT
Bandit algorithms arose as a standard approach to learning better

models online. As they become more popular, they are increasingly

deployed in complex machine learning pipelines, where their ac-

tions can be overwritten. For example, in ranking problems, a list of

recommended items can be modified by a downstream algorithm to

increase diversity. This may break the classic bandit algorithms and

lead to linear regret. Specifically, if the proposed action is not taken,

uncertainty in its estimated mean reward may not get reduced. In

this work, we study this setting and call it non-compliant bandits; as

the agent tries to learn rewarding actions that comply with a down-

stream task. We propose two algorithms, compliant contextual UCB

(CompUCB) and Thompson sampling (CompTS), which learn separate

reward and compliance models. The compliance model allows the

agent to avoid non-compliant actions. We derive a sublinear regret

bound for CompUCB. We also conduct experiments that compare

our algorithms to classic bandit baselines. The experiments show

failures of the baselines and that we mitigate them by learning

compliance models.
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1 INTRODUCTION
A bandit [5, 23, 27] is a framework for sequential decision making

under uncertainty where the learning agent takes actions, poten-

tially based on context, and observes rewards. The typical goal of

the agent is to learn an optimal policy that maximizes the expected

cumulative reward, which equivalently minimizes the expected cu-

mulative regret. Many types of bandit algorithms exist: contextual

[1, 4, 10], combinatorial [7, 15, 20, 21, 34], and even for multiple

objectives [31]. The underlying principle in all of them is that the

uncertainty in the mean reward estimate of the proposed action

is reduced after the action is taken. When the taken action differs

from the proposed action, the algorithms can have linear regret. In

this work, we study this setting under the name of non-compliant

bandits.

An action is non-compliant if it is overwritten or censored later.

Non-compliance is common in practice. For instance, an upstream

model may recommend a movie that a downstream model or rule-

based system overwrites. More specifically, the downstream system

may use a propensity model to predict the probability of violence

and overwrite violent recommendations for young viewers. When

the upstream model does not comply, it may or may not know

which movie was actually recommended [6, 36]. Recommendations

of an upstream model may also be censored. For instance, a voice

assistant may suppress recommendations that could disturb the

user. Since bandit algorithms are a popular approach to learning

to recommend [19, 20, 28, 34, 41], where action overwriting and

censorship are common, we set out to study non-compliance in the

bandit setting.

Only three prior works studied a similar setting [17, 33, 38]. In

the first two, the agent observes the taken action, similarly to our

work. Stirn and Jebara [38] do not make this assumption. However,

they model reward and compliance separately, similarly to our

work. While the first two works are non-contextual, the last one

considers a trivial tabular case, with a separate Bernoulli bandit

per context. In summary, non-compliant bandit algorithms that

could handle realistic context, and thus be practical, do not exist.

Since it is important to integrate bandit algorithms with modern

machine learning pipelines, the problem of non-compliant bandits

is significantly understudied, and we attempt to fill this gap.

In this work, we propose two non-compliant bandit algorithms:

compliant contextual Thompson sampling (CompTS) and compliant
contextual upper confidence bound (CompUCB). The algorithms act

optimistically with respect to the product of the compliance proba-

bility andmean reward. Both the reward and compliance models are
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contextual and learned separately. We focus on linear reward and lo-

gistic compliance models. This leads to simple practical algorithms

that are general, due to using features; and both computationally

and statistically efficient, due to relying on linear and generalized

linear models. We prove a �̃� (𝑑
√
𝑛) regret bound for CompUCB with

𝑑 features over 𝑛 rounds. We experiment with both synthetic and

real-world problems, where CompUCB and CompTS are compared

to classic bandit baselines and a neural network bandit algorithm.

Our experiments show that CompUCB and CompTS have much lower

regret than their classic counterparts, and are more efficient than

learning a neural network reward model.

This paper is organized as follows. In Section 2, we introduce the

setting of non-compliant bandits. In Section 3, we propose CompTS
and CompUCB for non-compliant bandits. In Section 4, we prove a

�̃� (𝑑
√
𝑛) regret bound for CompUCB with 𝑑 features over 𝑛 rounds.

In Section 5, we evaluate CompTS and CompUCB on both synthetic

and real-world problems. We conclude in Section 6.

2 SETTING
We adopt the following notation. Random variables are capitalized,

except for Greek letters like 𝜃 . For any positive integer 𝑛, we define

[𝑛] = {1, . . . , 𝑛}. The indicator function is 1{·}. The 𝑖-th entry of

vector 𝑣 is 𝑣𝑖 . If the vector is already indexed, such as 𝑣 𝑗 , we write

𝑣 𝑗,𝑖 . We denote the maximum and minimum eigenvalues of matrix

𝑀 ∈ R𝑑×𝑑 by 𝜆1 (𝑀) and 𝜆𝑑 (𝑀), respectively.
A contextual bandit [1, 4, 25, 28] is a sequential decision-making

problem where the mean rewards of actions depend on context. We

model it as follows. A learning agent interacts with the environment

for 𝑛 rounds. In round 𝑡 ∈ [𝑛], it takes an action 𝐴𝑡 ∈ A𝑡 and then

observes its stochastic reward 𝑌𝑡 ∈ R, where A𝑡 ⊆ A is a round-
dependent action set and A is the set of all actions. We assume

that A ⊆ R𝑑 is a set of 𝑑-dimensional feature vectors. Since A𝑡

depends on 𝑡 , we can encode any round-dependent context in it,

such as all feasible movies to recommend in round 𝑡 . The mean

reward of action 𝑎 ∈ A is 𝑓 (𝑎;𝜃∗), where 𝑓 : A × Θ → R is the

reward function, 𝜃∗ ∈ Θ is an unknown reward parameter, and Θ
is the set of feasible reward parameters. The stochastic reward of

action 𝐴𝑡 in round 𝑡 is 𝑌𝑡 = 𝑓 (𝐴𝑡 ;𝜃∗) + 𝜀𝑡 , where 𝜀𝑡 is independent
𝜎2-sub-Gaussian noise.

2.1 Many Flavors of Non-Compliance
Our bandit model can be viewed as a contextual bandit where the

taken action may differ from the proposed action𝐴𝑡 . We denote the

taken action by �̃�𝑡 , and relate the actions as �̃�𝑡 = 𝜅 (𝐴𝑡 ), for some

function 𝜅 . The function 𝜅 may be round-dependent and stochastic,

and is unknown to the agent. The reward of action �̃�𝑡 in round 𝑡 is

�̃�𝑡 = 𝑓 (�̃�𝑡 ;𝜃∗) + 𝜀𝑡 , where 𝜀𝑡 is independent 𝜎2-sub-Gaussian noise.

In the rest of this section, we discuss two variants of the problem,

where �̃�𝑡 is either observed or not. In both variants, �̃�𝑡 is observed,

since learning without feedback would be impossible.

Singlemodel. Suppose that the taken action �̃�𝑡 is unobserved or
we choose not to model it. Then our problem can be still solved as a

contextual bandit where the mean reward of action 𝑎 is 𝑓 (𝜅 (𝑎);𝜃∗),
and it is learned from pairs (𝐴𝑡 , �̃�𝑡 ). We call this approach a single
model. The challenge is that 𝑓 (𝜅 (𝑎);𝜃∗) may be a complex function

of action 𝑎, representing how the downstream model replaces 𝑎

with another action. These models are often complex, and thus

arguably hard to mimic and learn.

Classic model. Now suppose that the taken action �̃�𝑡 is ob-

served. Then any contextual bandit algorithm can be used to learn

𝑓 (𝑎;𝜃∗) from pairs (�̃�𝑡 , �̃�𝑡 ). We call this approach classic. It is not im-

mediately clear that this approach may fail. The reason is that when

an action𝐴𝑡 is proposed but the model is updated with (�̃�𝑡 , �̃�𝑡 ), the
uncertainty in the mean reward estimate of action 𝐴𝑡 may not be

reduced. Therefore, a classic bandit algorithm may repeatedly take

the same action whose uncertainty is not reduced and get stuck.

To address the shortcomings of existing bandit algorithms, we

propose modeling compliance. At a high level, we learn a function

𝑔(𝑎) = P (𝜅 (𝑎) = 𝑎), which represents the probability that action 𝑎

complies. This is possible when both the proposed 𝐴𝑡 and taken �̃�𝑡
actions are observed. This prevents the agent from taking actions

whose uncertainty cannot be reduced, which leads to failures of

the classic bandit algorithms.

2.2 Non-Compliant Bandits
A non-compliant bandit is a variant of a contextual bandit defined
as follows. In round 𝑡 ∈ [𝑛], the agent proposes an action 𝐴𝑡 ∈ A𝑡

and gets two observations. The first observation is the taken action
�̃�𝑡 ∈ A𝑡 . This action may differ from the proposed action 𝐴𝑡 . The
second observation is the stochastic reward of the taken action �̃�𝑡 ,

�̃�𝑡 = 𝑓 (�̃�𝑡 ;𝜃∗) + 𝜀𝑡 , where 𝜀𝑡 is independent 𝜎2-sub-Gaussian noise.

We discuss other feedback models in Section 2.1.

We consider a probabilistic compliance model, which models the

probability that an action complies. Specifically, the probability that

action 𝑎 ∈ A complies is 𝑔(𝑎;𝜓∗), where 𝑔 : A × Ψ→ [0, 1] is the
compliance function,𝜓∗ ∈ Ψ is an unknown compliance parameter,
and Ψ is the set of feasible compliance parameters. Since the agent

knows both 𝐴𝑡 and �̃�𝑡 , it effectively observes a stochastic compli-
ance indicator 𝐶𝑡 = 1

{
𝐴𝑡 = �̃�𝑡

}
, if the proposed and taken actions

are the same. This feedback relates to the compliance probability

as 𝐶𝑡 = 𝑔(𝐴𝑡 ;𝜓∗) + 𝜂𝑡 , where 𝜂𝑡 is independent Bernoulli noise.
Now we discuss the notion of optimality. An important point to

realize is that the classic notion of regret cannot be minimized. As

an example, consider a bandit problem where the optimal action

is always overwritten by the second best action. Therefore, in this

work, we define the optimal action in round 𝑡 as the one with the

highest mean reward weighted by its compliance probability,

𝐴𝑡,∗ = argmax 𝑎∈A𝑡
𝑔(𝑎;𝜓∗) 𝑓 (𝑎;𝜃∗) .

In plain English, this is the highest mean reward that the agent can

attain without modeling non-compliance, when𝐶𝑡 = 0. Specifically,

suppose that 𝑓 (𝑎;𝜃∗) ≥ 0 for all actions 𝑎 ∈ A, and that the reward

and compliance noise are independent. Then

E
[
�̃�𝑡

��𝐴𝑡 = 𝑎] = E [
𝐶𝑡 �̃�𝑡 + (1 −𝐶𝑡 )�̃�𝑡

��𝐴𝑡 = 𝑎]
= E

[
𝐶𝑡𝑌𝑡 + (1 −𝐶𝑡 )�̃�𝑡

��𝐴𝑡 = 𝑎]
≥ E [𝐶𝑡𝑌𝑡 |𝐴𝑡 = 𝑎] = 𝑔(𝑎;𝜓∗) 𝑓 (𝑎;𝜃∗) .

As discussed earlier, the downstream algorithm is usually complex;

and thus hard to mimic and learn. So𝑔(𝑎;𝜓∗) 𝑓 (𝑎;𝜃∗) is a reasonable
measure of attainable reward. The corresponding expected 𝑛-round
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Algorithm 1 CompTS: Compliant contextual TS.

Explore for 𝜏 rounds

for 𝑡 = 𝜏 + 1, . . . , 𝑛 do
Update distributions 𝑃𝑡,𝜃 and 𝑃𝑡,𝜓
Sample 𝜃𝑡 ∼ 𝑃𝑡,𝜃 and𝜓𝑡 ∼ 𝑃𝑡,𝜓
Propose action 𝐴𝑡 ← argmax 𝑎∈A𝑡

𝑔(𝑎;𝜓𝑡 ) 𝑓 (𝑎;𝜃𝑡 )
Action �̃�𝑡 is taken and �̃�𝑡 is observed

Algorithm 2 CompUCB: Compliant contextual UCB.

Explore for 𝜏 rounds

for 𝑡 = 𝜏 + 1, . . . , 𝑛 do
Update UCBs𝑈𝑡,𝜃 and𝑈𝑡,𝜓
Propose action 𝐴𝑡 ← argmax 𝑎∈A𝑡

𝑈𝑡,𝜓 (𝑎)𝑈𝑡,𝜃 (𝑎)
Action �̃�𝑡 is taken and �̃�𝑡 is observed

regret is

𝑅(𝑛) = E
[
𝑛∑︁
𝑡=1

𝑔(𝐴𝑡,∗;𝜓∗) 𝑓 (𝐴𝑡,∗;𝜃∗) − 𝑔(𝐴𝑡 ;𝜓∗) 𝑓 (𝐴𝑡 ;𝜃∗)
]
.

3 ALGORITHMS
The key idea in our algorithms is to act optimistically with respect

to the product of the compliance probability and mean reward. One

natural property of this design is that the agent ultimately learns to

take compliant actions, because the optimistic overestimates of the

compliance probability of non-compliant actions eventually go to

zero. When this happens, the agents starts taking compliant actions.

While these may have lower mean rewards, they can be higher in

expectation when the compliance is considered.

3.1 Algorithm Designs
We consider two algorithm designs. The first algorithm is a form

of contextual Thompson sampling (TS) [2–4, 22, 35, 39]. We present

it in Algorithm 1 and call it CompTS, which stands for compliant
contextual TS. The key idea in CompTS is to sample the unknown

model parameters from their posterior distributions and then act

optimistically with respect to them. The distribution of 𝜃∗ in round 𝑡
is denoted by 𝑃𝑡,𝜃 and 𝜃𝑡 is sampled from it. The distribution of𝜓∗ in
round 𝑡 is denoted by 𝑃𝑡,𝜓 and𝜓𝑡 is sampled from it. The posteriors

are detailed in Sections 3.2 and 3.3. Since our setting is frequentist

(Section 2), posterior sampling only serves as a randomization oracle

that is optimistic with a sufficiently high probability [4].

The second algorithm relies on upper confidence bounds (UCBs)
[1, 10, 14, 29]. We present it in Algorithm 2 and call it CompUCB,
which stands for compliant contextual UCB. The key idea is to act

optimistically with respect to the product of estimated compliance

probabilities and mean rewards. The UCB on the mean reward of ac-

tion 𝑎 in round 𝑡 is𝑈𝑡,𝜃 (𝑎). The UCB on the compliance probability

of action 𝑎 in round 𝑡 is𝑈𝑡,𝜓 (𝑎). Note that when the mean rewards

are non-negative,𝑈𝑡,𝜓 (𝑎)𝑈𝑡,𝜃 (𝑎) is a valid UCB on 𝑔(𝑎;𝜓∗) 𝑓 (𝑎;𝜃∗).
The UCBs are detailed in Sections 3.2 and 3.3.

To have computationally-efficient implementations of CompTS
and CompUCB, we consider specific reward and compliance models.

In particular, the reward function is linear, 𝑓 (𝑎;𝜃 ) = 𝑎⊤𝜃 for any

𝑎 ∈ A; and the compliance function is logistic,𝑔(𝑎;𝜓 ) = 𝜇 (𝑎⊤𝜓 ) for
any 𝑎 ∈ A, where 𝜇 (𝑥) = 1/(1 + exp[−𝑥]) is a sigmoid. We make

these choices for two reasons. First, both models are very general

and flexible, because any function can be approximated by a linear

function of non-linear features, which can be engineered based on

domain knowledge or previously logged data. Second, exploration

with linear and logistic models is well understood. Therefore, we

can build on existing techniques, both in the algorithm design and

analysis [1, 2, 10, 14, 22, 29].

3.2 Reward Model Estimation
Since the reward of the proposed action 𝐴𝑡 may not be observed,

when the action is non-compliant, we estimate the reward model

from taken actions �̃�𝑡 and their observations �̃�𝑡 . Specifically, the

reward parameter in round 𝑡 is estimated using regularized least

squares as

ˆ𝜃𝑡 = 𝜎
−2𝐺−1

𝑡,𝜃

𝑡−1∑︁
ℓ=1

�̃�ℓ�̃�ℓ , 𝐺𝑡,𝜃 = 𝜆𝐼𝑑 + 𝜎−2
𝑡−1∑︁
ℓ=1

�̃�ℓ�̃�
⊤
ℓ , (1)

where 𝐺𝑡,𝜃 is the Gram matrix for parameter 𝜃∗ in round 𝑡 and

𝜆 > 0 is a regularization parameter. This design is motivated by

LinUCB [1]. Note that both
ˆ𝜃𝑡 and 𝐺𝑡,𝜃 can be updated online in

𝑂 (𝑑2) time using the Sherman-Morrison formula.

An upper confidence bound that holds jointly over all rounds

with probability 1 − 𝛿 is

𝑈𝑡,𝜃 (𝑎) = 𝑎⊤ ˆ𝜃𝑡 + 𝑐𝜃 ∥𝑎∥Σ̂𝑡,𝜃 , (2)

where Σ̂𝑡,𝜃 = 𝐺−1
𝑡,𝜃

and 𝑐𝜃 = 𝑂 (
√︁
𝑑 log(1/𝛿)). We state 𝑐𝜃 precisely

in the proof of Theorem 1. The posterior distribution is a multivari-

ate Gaussian centered at
ˆ𝜃𝑡 , 𝑃𝑡,𝜃 (·) = N(·; ˆ𝜃𝑡 , Σ̂𝑡,𝜃 ).

3.3 Compliance Model Estimation
The compliance model is logistic, 𝑔(𝑎;𝜓∗) = 𝜇 (𝑎⊤𝜓∗), where 𝜇 is a
sigmoid. We estimate it from proposed actions 𝐴𝑡 and their compli-

ance indicator 𝐶𝑡 = 1
{
𝐴𝑡 = �̃�𝑡

}
. More specifically, the compliance

parameter in round 𝑡 is estimated using logistic regression as

ˆ𝜓𝑡 = argmax

𝜓 ∈Ψ

𝑡−1∏
ℓ=1

𝑔(𝐴ℓ ;𝜓 )𝐶ℓ (1 − 𝑔(𝐴ℓ ;𝜓 ))1−𝐶ℓ . (3)

We solve this problem by iteratively reweighted least squares (IRLS)
[40]. This is an iterative algorithm and each of its iterations takes

𝑂 (𝑡) time, since (3) contains 𝑂 (𝑡) terms. To speed up the computa-

tion, we initialize IRLS in round 𝑡 with a solution from round 𝑡 − 1.
After that, IRLS typically converges in a single step. This speedup

is simple and sufficient for our needs. Other works on generalized

linear bandits could be used to increase computational efficiency.

For instance, Jun et al. [16] apply the online Newton step and Ding

et al. [12] apply online stochastic gradient descent.

Uncertainty in the estimated compliance parameter
ˆ𝜓𝑡 is modeled

using the Gram matrix 𝐺𝑡,𝜓 =
∑𝑡−1
ℓ=1 𝐴ℓ𝐴

⊤
ℓ
, which can be updated

online in𝑂 (𝑑2) time. An upper confidence bound that holds jointly

over all rounds with probability 1 − 𝛿 is

𝑈𝑡,𝜓 (𝑎) = 𝜇 (𝑎⊤ ˆ𝜓𝑡 + 𝑐𝜓 ∥𝑎∥Σ̂𝑡,𝜓 ) , (4)
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where Σ̂𝑡,𝜓 = 𝐺−1
𝑡,𝜓

and 𝑐𝜓 = 𝑂 (
√︁
𝑑 log(1/𝛿)). This design is based

on Li et al. [29], who compute an upper confidence bound on 𝑎⊤𝜓∗
instead of 𝜇 (𝑎⊤𝜓∗). We state 𝑐𝜓 in the proof of Theorem 1.

The posterior distribution is a multivariate Gaussian centered at

the estimated compliance parameter
ˆ𝜓𝑡 ,

𝑃𝑡,𝜓 (·) = N(·; ˆ𝜓𝑡 , Σ̂𝑡,𝜓 ) .

Finally, note that (3) and Σ̂𝑡,𝜓 are ill defined unless 𝜆𝑑 (𝐺𝑡,𝜓 ) > 0. To

guarantee that this condition holds, we initially explore randomly

in CompUCB and CompTS until 𝜆𝑑 (𝐺𝑡,𝜓 ) ≥ 1. Our analysis is also

under the assumption that 𝜆𝑑 (𝐺𝑡,𝜓 ) ≥ 1.

4 ANALYSIS
In this section, we analyze CompUCB andmake the following assump-

tions. First, the feature vectors 𝑎 ∈ A are bounded as ∥𝑎∥2 ≤ 1.

This assumption is standard and without loss of generality. Second,

we assume that 𝑓 (𝑎;𝜃∗) ∈ [0, 1] for all 𝑎 ∈ A. This can be satis-

fied by rescaling the original function and thus is without loss of

generality. Under this assumption, 𝑔(𝑎;𝜓∗) 𝑓 (𝑎;𝜃∗) ∈ [0, 1], which
we use in the proof. We also assume that𝑈𝑡,𝜃 (𝑎) ≤ 1, which holds

when𝑈𝑡,𝜃 (𝑎) is clipped at 1. We have𝑈𝑡,𝜓 (𝑎) ≤ 1 by design.

Our regret bound is stated and discussed below. It depends on the

minimum and maximum derivatives of the logistic function in the

compliance model, which is standard in generalized linear bandit

analyses [22, 29]. The minimum derivative of the mean function in

the neighborhood of𝜓∗ is

¤𝑔min = min

∥𝑎 ∥2≤1, ∥𝜓−𝜓∗ ∥2≤1
¤𝑔(𝑎;𝜓 ) ,

where ¤𝑔(𝑎;𝜓 ) denotes the derivative of 𝜇 (𝑎⊤𝜓 ) with respect to𝜓 .

The maximum derivative is

¤𝑔max = max

∥𝑎 ∥2≤1,𝜓 ∈Ψ
¤𝑔(𝑎;𝜓 ) .

The mean function in the logistic model is a sigmoid. Therefore, its

maximum derivative is ¤𝑔max = 1/4.

Theorem 1. Let 𝜏 be a round such that

𝜆𝑑 (𝐺𝜏,𝜓 ) ≥ max

{
𝑑 log(𝑛/𝑑) + 2 log𝑛

4 ¤𝑔2
min

, 1

}
(5)

holds with probability at least 1 − 1/𝑛. Then the 𝑛-round regret of
CompUCB is bounded as

𝑅(𝑛) ≤ 2𝑐𝜓 ¤𝑔max

√︄
𝑑𝑛

log 2

log

(
1 + 𝑛

𝑑

)
+

2𝑐𝜃

√︄
𝜆−1𝑑𝑛

log(1 + 4𝜆−1)
log

(
1 + 4𝜆−1𝑛

𝑑

)
+ 𝜏 + 4 .

Proof. The claim is proved in Appendix A. □

Our regret bound has two key terms. The 𝑐𝜓 term is the regret

for learning the compliance model. It is �̃� (𝑑
√
𝑛), since 𝑐𝜓 = �̃� (

√
𝑑),

and similar to the regret bounds in logistic bandits [14, 22, 29]. The

𝑐𝜃 term is the regret for learning the reward model. It is �̃� (𝑑
√
𝑛),

since 𝑐𝜃 = �̃� (
√
𝑑), and similar to the regret bounds in linear bandits

[1, 10]. Therefore, as expected, our regret bound is the sum of

regrets of the two learned models. Finally, we want to comment

on the technical assumption in (5). The assumption is borrowed

from prior works [22, 29] and can be satisfied as follows. Let 𝜀

denote the right-hand side of (5). Then the assumption holds after

𝜏 = 𝑂 (𝜀𝑑 log𝑛) rounds, when the action sets A𝑡 are sufficiently

diverse.

We would like to discuss our proof next. The most novel part

is the regret decomposition in the first half, where we decompose

the regret into those of logistic and linear models. After that, we

apply concentration bounds of Abbasi-Yadkori et al. [1] and Kveton

et al. [22], and finish the proof with the elliptical lemma. Our regret

decomposition generalizes those in contextual cascading bandits

[42] to logistic models. Our attempts to prove a similar bound for

CompTS failed. Such bounds are hard to prove in partial observation

problems. For instance, Cheung et al. [8] proved a frequentist regret

bound for Thompson sampling in a non-contextual cascading bandit

with a huge constant of 4

√
𝜋𝑒8064 (Lemma 4.3 and the last equation

in Section 4 therein). Finally, the strength of our proof is modularity,

because the concentration arguments can be easily replaced. As an

example, we believe that the bound of Kveton et al. [22] could be

replaced with that of Faury et al. [13] to improve dependence on

the minimum derivative ¤𝑔min, which is ¤𝑔−2
min

now.

5 EXPERIMENTS
We conduct four experiments. In Section 5.2, we experiment with

various compliance types. In Section 5.3, we evaluate the robustness

of CompTS and CompUCB to model misspecification. In Section 5.4,

we study the scalability of our algorithms. Finally, we experiment

with a real-world problem in Section 5.5.

Our algorithms, CompTS and CompUCB, are implemented with

linear reward and logistic compliance models. In all experiments,

the actions are overwritten as follows. If the proposed action 𝐴𝑡

does not comply, 𝐶𝑡 = 0, �̃�𝑡 is a random compliant action. If no

action complies, �̃�𝑡 is a random action.

5.1 Baselines
We have three baselines in all experiments: LinTS [4], LinUCB [1],

and EnsembleNN [32]. Both LinTS and LinUCB are examples of

classic bandit algorithms (Section 2.1). They have the same reward

model as CompTS and CompUCB, and illustrate that exploration fails

when the compliance of actions is not modeled, even if the reward

model is correctly specified.

EnsembleNN is an example of a single model algorithm in Sec-

tion 2.1. It learns a complex non-linear model of the mean reward

of the proposed action, instead of modeling the reward and com-

pliance, as in CompTS and CompUCB. EnsembleNN explores using

Thompson sampling, where the true posterior distribution is ap-

proximated by an ensemble of neural networks. Each network has

2 fully-connected layers with ReLU activation functions. In each

round 𝑡 , one network from the ensemble is chosen uniformly at

random. The action that maximizes the mean reward under the

chosen network is taken and all networks in the ensemble are up-

dated using its observed reward. The performance of EnsembleNN
is sensitive to its hyper-parameters. Therefore, we tune them. The

final tuned values are ensemble size 30, mini-batch window size

32, learning rate 0.2, hidden layer size 100, prior variance 0.01, and

perturbation variance 0.05.
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Figure 1: Evaluation of CompTS and CompUCB on three compliance models. From left to right, we experiment with (a) full
compliance, (b) stochastic compliance, and (c) deterministic compliance.
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(a) Overspecification
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Figure 2: Robustness of CompTS and CompUCB to misspecified compliance models. From left to right, we experiment with (a)
feature overspecification, (b) proper feature specification, and (c) feature underspecification.

After the tuning, EnsembleNN performs well in all experiments

and shows the versatility of complexmodels. In comparison, CompTS
and CompUCB do not need any tuning and are also less computation-

ally costly. The former is arguably hard in the online setting, since

the problem instance is unknown in advance. In terms of computa-

tion time, EnsembleNN is 3 times more computationally costly than

CompTS and CompUCB in Section 5.2 (750 versus 250 seconds), and

10 times more costly than LinTS and LinUCB (75 seconds). We note

that further optimization of all algorithms is possible.

5.2 Compliance Type
We start our experiments with a synthetic problem. The number of

features is 𝑑 = 10 and the number of actions is 𝐾 = 50. The reward

parameter is sampled i.i.d. from N(0𝑑 , 𝐼𝑑 ). The feature vectors of
the actions are sampled uniformly at random from [−1, 1]𝑑 . The
reward noise is Gaussian N(0, 0.52). All simulations are averaged

over 100 independent runs.

Our results are reported in Figure 1. In Figure 1b, we experiment

with a stochastic compliance model𝐶𝑡 ∼ Ber(𝜇 (𝐴⊤𝑡 𝜓∗)), where the
compliance parameter𝜓∗ is sampled i.i.d. from N(0𝑑 , 𝐼𝑑 ) in each

run. This is the same compliance model as in our algorithm design

(Section 3) and analysis (Section 4). We observe that learning of

the compliance model is very beneficial. Specifically, both LinTS
and LinUCB do not model compliance, and have linear regret. Our

algorithms also outperform EnsembleNN, which does try to model

the structure of our problem.

In Figure 1c, we experiment with deterministic compliance 𝐶𝑡 =

1
{
𝐴𝑡,1 ≥ 0.5

}
, where 𝐴𝑡,1 is the first entry of the action feature

vector 𝐴𝑡 . The challenge of this setting is that our model is mis-

specified, as the actions either always or never comply. Despite

this, CompTS and CompUCB learn near-optimal actions, as evidenced

by their sublinear regret. In contrast, both LinTS and LinUCB have

linear regret. Our algorithms also outperform EnsembleNN.
Finally, in Figure 1a, we experiment with a full compliance model

𝐶𝑡 = 1. This setting validates that CompTS and CompUCB are imple-

mented correctly. In particular, when all actions comply, CompTS and
CompUCB reduce to LinTS and LinUCB, respectively. We also observe

that EnsembleNN performs the worst. This is not surprising, since

the reward function in this experiment is linear but EnsembleNN
tries to approximate it using a 2-layer neural network.

5.3 Model Misspecification
Contextual bandit algorithms are known to be sensitive to model

misspecification. In this section, we study this topic. In all experi-

ments, we use the stochastic compliance model from Section 5.2,

and modify compliance model features in CompTS and CompUCB as
follows. In feature overspecification, we add 5 additional compliance

features that are sampled uniformly at random from [−1, 1]. In this
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Figure 3: Evaluation of CompTS and CompUCB on 9 synthetic problems of different sizes. We vary the number of features, from
𝑑 = 5 to 𝑑 = 25, and the size of the action set, from 𝐾 = 20 to 𝐾 = 100.

case, CompTS and CompUCB have to learn that the additional features

are irrelevant, which decreases their statistical efficiency. In proper
feature specification, the compliance features remain unchanged.

Finally, in feature underspecification, we randomly remove 2 com-

pliance features out of 10. The challenge of this setting is that the

compliance model is misspecified.

Our results are reported in Figure 2. We observe three major

trends. First, both CompTS and CompUCB performwell when the com-

pliance features are correctly specified (Figure 2b). Second, when

the compliance features are overspecified (Figure 2a), the statis-

tical efficiency of CompTS and CompUCB decreases, which results

in a slightly higher regret. Nevertheless, both algorithms still out-

perform all baselines. Finally, when the compliance features are

underspecified, CompTS and CompUCB can have linear regret. In this

case, it is most beneficial to learn a more complex model using

EnsembleNN. Surprisingly, even learning of an incorrect model of

compliance, by CompTS and CompUCB, is more beneficial than not

learning it at all, by LinTS and LinUCB.

5.4 Scalability
Now we examine how the regret scales with the number of features

𝑑 and actions 𝐾 . All experiments in this section are variants of the

stochastic compliance setting in Section 5.2.

Our results are reported in Figure 3.We observe that both CompTS
and CompUCB have sublinear regret in all plots, and outperform the

classic bandit algorithms, whose regret is always linear. For a fixed

𝑑 , the regret of CompTS and CompUCB increases slowly with 𝐾 . This

suggests that the proposed algorithms can scale to large action sets.

For𝑑 = 25, CompUCB has a slightly higher regret initially than LinTS
and LinUCB. As the number of rounds 𝑛 increases, CompUCB quickly
learns a good policy. The best performing algorithm is CompTS. Its
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(a) Full compliance
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Figure 4: Evaluation of CompTS and CompUCB on three compliance models in the MovieLens dataset. From left to right, we
experiment with (a) full compliance, (b) stochastic compliance, and (c) deterministic compliance.
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(a) Age restricted compliance
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Figure 5: Evaluation of CompTS and CompUCB on three realistic compliance models in the MovieLens dataset. From left to right,
we experiment with (a) age restricted compliance, (b) logistic lapse model, and (c) linear activity model.

performance gap over the other algorithms grows with the number

of features 𝑑 .

5.5 MovieLens Experiments
The goal of these experiments is to showcase CompTS and CompUCB
beyond synthetic problems. We experiment with the MovieLens

1M dataset [24], with 1 million ratings from 6 040 users for 3 883

movies. The dataset is used as follows. We complete the sparse

rating matrix 𝑀 using alternating least squares [11] with rank

𝑑 = 5. This rank is high enough to yield a low prediction error.

The learned factorization is𝑀 = 𝑈𝑉⊤. The 𝑖-th row of𝑈 , denoted

by 𝑈𝑖 , is the latent factor representing user 𝑖 . The 𝑗-th row of 𝑉 ,

denoted by 𝑉𝑗 , is the latent factor representing movie 𝑗 .

Our results are averaged over 100 random runs. In each run,

we simulate interactions of a recommender system with randomly

arriving users over 𝑛 rounds. In interaction 𝑡 ∈ [𝑛], we first choose
a random user 𝑖 . Then we select 100 random movies as the action

set A𝑡 in round 𝑡 . The feature vector of movie 𝑗 recommended to

user 𝑖 is vec(𝑈𝑖𝑉⊤𝑗 ), where vec(𝑀) is a vectorization of matrix𝑀 .

Since both𝑈𝑖 and 𝑉𝑗 are 5-dimensional vectors, vec(𝑈𝑖𝑉⊤𝑗 ) has 25
dimensions. The mean reward for recommending movie 𝑗 to user 𝑖

is𝑈𝑖𝑉
⊤
𝑗

and the agent observes it with Gaussian noise N(0, 0.52).
Compliance type.We study the same three compliance types

as in Section 5.2. Our results are reported in Figure 4. We observe

that all trends are similar to Figure 1. One exception is that CompUCB
is less statistically efficient, which is manifested by a higher regret

relative to the other algorithms. This is because the number of

features 𝑑 increased. The regret remains sublinear though.

Realistic compliance rules.We experiment with three realistic

scenarios. Since the MovieLens dataset does not contain compliance

feedback, we generate it based on user and item features. The first

non-compliance scenario is age restricted compliance. Initially we

wanted to block horror and crime movies for young users. Unfortu-

nately, these users comprise only about 3% of theMovieLens dataset.

Therefore, we decided to suppress children movies for users above

age 18. The other two non-compliance scenarios are motivated by

pop-up messages on mobile devices, which are supposed to increase

user engagement. In the first scenario, we measure user activity by

the number of days since the user left a rating in a 30-day window.

We predict the activity using a linear model of user features. A rec-

ommendation is suppressed if the user activity is at least 2 days. We

call this model linear compliance. In the other scenario, we measure

user activity using lapse, which takes value 0 if the user is active in

the subsequent 30 days, and 1 otherwise. We predict the lapse using

a logistic model of user features. A recommendation is suppressed

if the lapse is lower than 0.5. We call this model logistic compliance.
If the suppression was based on user features only, we would either

recommend everything or nothing. Therefore, we limit it only to
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movies 𝑗 whose first entry of𝑉𝑗 is greater than 0.5, similarly to our

experiments in Figures 1c and 4c. The thresholds are chosen so that

about 50% of recommendations are suppressed on average.

Our results are reported in Figure 5. In all experiments, CompTS
and CompUCB perform well, and CompTS is the best algorithm. Al-

though CompUCB has a higher regret than LinTS in Figure 5a, it is

never linear. LinTS and LinUCB have linear regret in Figures 5b and

5c. Overall, we observe that CompTS and CompUCB perform robustly

in all tested compliance models.

6 CONCLUSIONS
We study non-compliant bandits, where an agent takes actions that

may be overwritten by a downstream algorithm. We propose UCB

and Thompson sampling algorithms for this setting, which model

the reward and compliance separately. The algorithms are contex-

tual and efficient. We prove a �̃� (𝑑
√
𝑛) regret bound for CompUCB

with 𝑑 features over 𝑛 rounds. Our empirical results show that

CompTS and CompUCB consistently outperform their classic counter-

parts, LinTS and LinUCB, in both synthetic and real-world problems.

In all but one experiment, CompTS outperforms EnsembleNN, which
learns an expressive neural network reward model, instead of mod-

eling the structure of our problem. This is despite the fact that

EnsembleNN was tuned, which would be impossible in the true

online setting.

Non-compliance is understudied in bandits and we hope that

this paper will encourage more work on this important practical

topic. Our work can be readily extended in four directions. First, we

make an assumption that the rewards of taken actions are always

observed. Our algorithm design and analysis can be generalized to

a slightly more general setting, where the reward is only observed

when the proposed action complies. Second, while we show em-

pirically that CompTS performs well, we do not bound its regret.

We discuss technical challenges that prevented the analysis after

Theorem 1. Third, similarly to classic bandit algorithms, model

misspecification can be an issue, and additional work is needed

to improve the robustness of CompTS and CompUCB. Finally, our
work can be extended to other popular bandit models for recom-

mender systems, such as combinatorial semi-bandits [7, 15, 21],

online learning to rank [9, 18, 20, 26, 34], and collaborative filtering

and low-rank bandits [19, 30, 37, 41].

A PROOF OF THEOREM 1
To simplify notation, we define 𝑟 (𝑎) = 𝑔(𝑎;𝜓∗) 𝑓 (𝑎;𝜃∗). We start

with trivial upper bounds on the regret in the first 𝜏 rounds and the

𝑛-round regret due to (5) not holding in round 𝜏 ,

𝑅(𝑛) ≤ E
[
𝑛∑︁
𝑡=𝜏

𝑟 (𝐴𝑡,∗) − 𝑟 (𝐴𝑡 )
]
+ 𝜏 + 1 .

If (5) holds in round 𝜏 , we have P
(
∥ ˆ𝜓𝑡 −𝜓∗∥2 > 1

)
≤ 1/𝑛 for any

round 𝑡 ≥ 𝜏 [22]. Therefore, we can further bound the regret as

𝑅(𝑛) ≤ E
[
𝑛∑︁
𝑡=𝜏

1{𝐸𝑡 } (𝑟 (𝐴𝑡,∗) − 𝑟 (𝐴𝑡 ))
]
+ 𝜏 + 2 ,

where 𝐸𝑡 =

{
∥ ˆ𝜓𝑡 −𝜓∗∥2 ≤ 1

}
. To simplify notation, we do not write

1{𝐸𝑡 } in the rest of the analysis.

Let 𝐻𝑡 be the history of all interactions of the agent up to round

𝑡 . Let 𝑈𝑡,𝜃 (𝑎) and 𝐿𝑡,𝜃 (𝑎) be high-probability upper and lower con-

fidence bounds, respectively, on the mean reward of action 𝑎 in

round 𝑡 . Let 𝑈𝑡,𝜓 (𝑎) and 𝐿𝑡,𝜓 (𝑎) be the corresponding quantities

for the compliance probability of action 𝑎 in round 𝑡 . Specifically,

let

𝐿𝑡,𝜃 (𝑎) ≤ 𝑓 (𝑎;𝜃∗) ≤ 𝑈𝑡,𝜃 (𝑎) ,
𝐿𝑡,𝜓 (𝑎) ≤ 𝑔(𝑎;𝜓∗) ≤ 𝑈𝑡,𝜓 (𝑎) ,

hold jointly over all actions 𝑎 and rounds 𝑡 with probability at least

1 − 2𝛿 . Let

𝑊𝑡,𝜃 (𝑎) = 𝑈𝑡,𝜃 (𝑎) − 𝐿𝑡,𝜃 (𝑎) ,
𝑊𝑡,𝜓 (𝑎) = 𝑈𝑡,𝜓 (𝑎) − 𝐿𝑡,𝜓 (𝑎) .

Now we introduce the upper confidence bounds and get

𝑟 (𝐴𝑡,∗) − 𝑟 (𝐴𝑡 ) (6)

= 𝑔(𝐴𝑡,∗;𝜓∗) 𝑓 (𝐴𝑡,∗;𝜃∗) − 𝑔(𝐴𝑡 ;𝜓∗) 𝑓 (𝐴𝑡 ;𝜃∗)
≤ 𝑔(𝐴𝑡,∗;𝜓∗) 𝑓 (𝐴𝑡,∗;𝜃∗) −𝑈𝑡,𝜓 (𝐴𝑡,∗)𝑈𝑡,𝜃 (𝐴𝑡,∗) +
𝑈𝑡,𝜓 (𝐴𝑡 )𝑈𝑡,𝜃 (𝐴𝑡 ) − 𝑔(𝐴𝑡 ;𝜓∗) 𝑓 (𝐴𝑡 ;𝜃∗) .

The inequality 𝑈𝑡,𝜓 (𝐴𝑡 )𝑈𝑡,𝜃 (𝐴𝑡 ) ≥ 𝑈𝑡,𝜓 (𝐴𝑡,∗)𝑈𝑡,𝜃 (𝐴𝑡,∗) holds by
the design of CompUCB. The first difference in (6) is at most zero

with probability at least 1 − 2𝛿 . The second difference in (6) can be

decomposed as

𝑈𝑡,𝜓 (𝐴𝑡 )𝑈𝑡,𝜃 (𝐴𝑡 ) − 𝑔(𝐴𝑡 ;𝜓∗) 𝑓 (𝐴𝑡 ;𝜃∗)
= 𝑈𝑡,𝜃 (𝐴𝑡 ) [𝑈𝑡,𝜓 (𝐴𝑡 ) − 𝑔(𝐴𝑡 ;𝜓∗)] +
𝑔(𝐴𝑡 ;𝜓∗) [𝑈𝑡,𝜃 (𝐴𝑡 ) − 𝑓 (𝐴𝑡 ;𝜃∗)] .

Now we use that𝑈𝑡,𝜃 (𝑎) ∈ [0, 1], apply lower confidence bounds

to 𝑔 and 𝑓 , and get

𝑈𝑡,𝜓 (𝐴𝑡 )𝑈𝑡,𝜃 (𝐴𝑡 ) − 𝑔(𝐴𝑡 ;𝜓∗) 𝑓 (𝐴𝑡 ;𝜃∗)
≤𝑊𝑡,𝜓 (𝐴𝑡 ) + 𝑔(𝐴𝑡 ;𝜓∗)𝑊𝑡,𝜃 (𝐴𝑡 ) .

Since 𝑔(𝐴𝑡 ;𝜓∗) and 𝐶𝑡 can be exchanged in expectation,

E
[
𝑈𝑡,𝜓 (𝐴𝑡 )𝑈𝑡,𝜃 (𝐴𝑡 ) − 𝑔(𝐴𝑡 ;𝜓∗) 𝑓 (𝐴𝑡 ;𝜃∗)

]
≤ E

[
𝑊𝑡,𝜓 (𝐴𝑡 ) +𝐶𝑡𝑊𝑡,𝜃 (𝐴𝑡 )

]
.

Finally, we collect all inequalities thus far and get

𝑅(𝑛) ≤ E
[
𝑛∑︁
𝑡=𝜏

𝑊𝑡,𝜓 (𝐴𝑡 ) +𝐶𝑡𝑊𝑡,𝜃 (𝐴𝑡 )
]
+ 𝜏 + 2 + 2𝛿𝑛 .

We instantiate the upper and lower confidence bounds next.

Reward model. The reward model is linear with parameter 𝜃∗.
Thus, by Theorem 2 of Abbasi-Yadkori et al. [1], 𝜃∗ lies in set

𝐼𝑡,𝜃 =

𝜃 ∈ Θ : ∥𝜃 − ˆ𝜃𝑡 ∥Σ̂−1
𝑡,𝜃

≤ 𝜎

√︄
𝑑 log

(
1 + 𝑛/𝜆
𝛿

)
+ 𝜆

1

2 𝑆


in all rounds 𝑡 ∈ [𝑛] jointly with probability at least 1 − 𝛿 , where
∥𝜃∗∥2 ≤ 𝑆 . In our case, 𝜎 = 1/2, and the definition of 𝐼𝑡,𝜃 leads to
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an upper confidence bound

𝑎⊤𝜃∗ = 𝑎⊤ ˆ𝜃𝑡 + 𝑎⊤ (𝜃∗ − ˆ𝜃𝑡 )

≤ 𝑎⊤ ˆ𝜃𝑡 + ∥𝜃∗ − ˆ𝜃𝑡 ∥Σ̂−1
𝑡,𝜃

∥𝑎∥Σ̂𝑡,𝜃

≤ 𝑎⊤ ˆ𝜃𝑡 + ©­«12
√︄
𝑑 log

(
1 + 𝑛/𝜆
𝛿

)
+ 𝜆

1

2 𝑆
ª®¬︸                               ︷︷                               ︸

𝑐𝜃

∥𝑎∥Σ̂𝑡,𝜃

= 𝑈𝑡,𝜃 (𝑎) .

Similarly, 𝐿𝑡,𝜃 (𝑎) = 𝑎⊤ ˆ𝜃𝑡 − 𝑐𝜃 ∥𝑎∥Σ̂𝑡,𝜃 is a lower confidence bound

and thus𝑊𝑡,𝜃 (𝑎) ≤ 2𝑐𝜃 ∥𝑎∥Σ̂𝑡,𝜃 . By the Cauchy-Schwarz inequality

and the concavity of the square root,

E

[
𝑛∑︁
𝑡=𝜏

𝐶𝑡𝑊𝑡,𝜃 (𝐴𝑡 )
]
≤ 2𝑐𝜃

√√√
𝑛E

[
𝑛∑︁
𝑡=𝜏

𝐶𝑡 ∥𝐴𝑡 ∥2
Σ̂𝑡,𝜃

]

≤ 2𝑐𝜃

√√√
𝑛E

[
𝑛∑︁
𝑡=𝜏

∥�̃�𝑡 ∥2
Σ̂𝑡,𝜃

]
.

The last step follows from𝐴𝑡 = �̃�𝑡 when𝐶𝑡 = 1 and that the norms

are non-negative. Finally, we apply the elliptical lemma (Lemma 2

in Appendix B) for Σ0 = 𝜆
−1𝐼𝑑 , 𝐺𝑡 = 𝐺𝑡,𝜃 , and 𝜎 = 1/2,

𝑛∑︁
𝑡=𝜏

𝐶𝑡 ∥𝐴𝑡 ∥2Σ̂𝑡,𝜃 ≤
𝜆−1𝑑

log(1 + 4𝜆−1)
log

(
1 + 4𝜆−1𝑛

𝑑

)
.

Compliance model. The compliance model is logistic with

parameter𝜓∗. Therefore, by Lemmas 7 and 8 in Kveton et al. [22],

𝜓∗ lies in set

𝐼𝑡,𝜓 =

{
𝜓 ∈ Ψ : ∥𝜓 − ˆ𝜓𝑡 ∥Σ̂−1

𝑡,𝜓

≤ 1

2 ¤𝑔2
min

√︂
𝑑 log

( 𝑛
𝑑𝛿

)}
in all rounds 𝑡 ≥ 𝜏 jointly with probability at least 1 − 𝛿 , under the
assumption that ∥ ˆ𝜓𝑡 −𝜓∗∥2 ≤ 1. The definition of 𝐼𝑡,𝜓 leads to an

upper confidence bound

𝑔(𝑎;𝜓∗) = 𝜇 (𝑎⊤ ˆ𝜓𝑡 + 𝑎⊤ (𝜓∗ − ˆ𝜓𝑡 ))

≤ 𝜇 (𝑎⊤ ˆ𝜓𝑡 + ∥𝜓∗ − ˆ𝜓𝑡 ∥Σ̂−1
𝑡,𝜓

∥𝑎∥Σ̂𝑡,𝜓 )

≤ 𝜇
(
𝑎⊤ ˆ𝜓𝑡 +

1

2 ¤𝑔2
min

√︂
𝑑 log

( 𝑛
𝑑𝛿

)
︸                   ︷︷                   ︸

𝑐𝜓

∥𝑎∥Σ̂𝑡,𝜓

)

= 𝑈𝑡,𝜓 (𝑎) .

Analogously, 𝐿𝑡,𝜓 (𝑎) = 𝜇 (𝑎⊤ ˆ𝜓𝑡 − 𝑐𝜓 ∥𝑎∥Σ̂𝑡,𝜓 ) is a lower confidence
bound and thus𝑊𝑡,𝜓 (𝑎) ≤ 2𝑐𝜓 ¤𝑔max∥𝑎∥Σ̂𝑡,𝜓 , where ¤𝑔max is the Lip-

schitz factor of 𝜇. By the Cauchy-Schwarz inequality and the con-

cavity of the square root,

E

[
𝑛∑︁
𝑡=𝜏

𝑊𝑡,𝜓 (𝐴𝑡 )
]
≤ 𝑐𝜓 ¤𝑔max

√√√
𝑛E

[
𝑛∑︁
𝑡=𝜏

∥𝐴𝑡 ∥2
Σ̂𝑡,𝜓

]
.

Finally, we apply the elliptical lemma (Lemma 2 in Appendix B)

for Σ0 = Σ̂𝜏,𝜓 and 𝐺𝑡 = 𝐺𝑡,𝜓 , which implies that 𝜎 = 1. From the

definition of 𝜏 , 𝜆1 (Σ0) ≤ 1, and thus

𝑛∑︁
𝑡=𝜏

∥𝐴𝑡 ∥2Σ̂𝑡,𝜓 ≤
𝑑

log 2

log

(
1 + 𝑛

𝑑

)
.

To complete the proof, we set 𝛿 = 1/𝑛.

B TECHNICAL LEMMAS
Lemma 2. Let 𝐺𝑡 = 𝜎

−2 ∑𝑡−1
ℓ=1 𝐴ℓ𝐴

⊤
ℓ
and Σ̂𝑡 = (Σ−1

0
+𝐺𝑡 )−1. Then

for any PSD matrix Σ0, (𝐴𝑡 )𝑡 ∈[𝑛] of at most unit length, and 𝜎 > 0,
𝑛∑︁
𝑡=1

∥𝐴𝑡 ∥2Σ̂𝑡 ≤ 𝑑𝑐 log
(
1 + 𝜆1 (Σ0)𝑛

𝜎2𝑑

)
, 𝑐 =

𝜆1 (Σ0)
log(1 + 𝜎−2𝜆1 (Σ0))

.

Proof. Fix round 𝑡 and note that

∥𝐴𝑡 ∥2Σ̂𝑡 = 𝜎2
𝐴⊤𝑡 Σ̂𝑡𝐴𝑡
𝜎2

≤ 𝑐 log(1 + 𝜎−2𝐴⊤𝑡 Σ̂𝑡𝐴𝑡 ) (7)

= 𝑐 log det(𝐼𝑑 + 𝜎−2Σ̂
1

2

𝑡 𝐴𝑡𝐴
⊤
𝑡 Σ̂

1

2

𝑡 )
holds for 𝑐 defined in the claim. The inequality is proved as follows.

For any 𝑥 ∈ (0, 𝑢],

𝑥 =
𝑥

log(1 + 𝑥) log(1 + 𝑥) ≤
(
max

𝑥 ∈[0,𝑢 ]
𝑥

log(1 + 𝑥)

)
log(1 + 𝑥)

=
𝑢

log(1 + 𝑢) log(1 + 𝑥) .

Then we set 𝑥 = 𝜎−2𝐴⊤𝑡 Σ̂𝑡𝐴𝑡 and use Weyl’s inequalities to derive

𝐴⊤𝑡 Σ̂𝑡𝐴𝑡 ≤ 𝜆1 (Σ̂𝑡 ) = 𝜆1 ((Σ−10 +𝐺𝑡 )−1) = 𝜆−1𝑑 (Σ
−1
0
+𝐺𝑡 )

≤ 𝜆−1
𝑑
(Σ−1

0
) = 𝜆1 (Σ0) .

The next step is an upper bound on the logarithmic term in (7) that

can be rewritten as

log det(𝐼𝑑 + 𝜎−2Σ̂
1

2

𝑡 𝐴𝑡𝐴
⊤
𝑡 Σ̂

1

2

𝑡 )
= log det(Σ̂−1𝑡 + 𝜎−2𝐴𝑡𝐴⊤𝑡 ) − log det(Σ̂−1𝑡 ) .

Because of that, when we sum over all rounds, we get telescoping

and the total contribution of all terms is at most

𝑛∑︁
𝑡=1

log det(𝐼𝑑 + 𝜎−2Σ̂
1

2

𝑡 𝐴𝑡𝐴
⊤
𝑡 Σ̂

1

2

𝑡 )

= log det(Σ̂−1𝑛+1) − log det(Σ̂
−1
1
) = log det(Σ

1

2

0
Σ̂−1𝑛+1Σ

1

2

0
)

≤ 𝑑 log
(
1

𝑑
tr(Σ

1

2

0
Σ̂−1𝑛+1Σ

1

2

0
)
)

= 𝑑 log

(
1 + 1

𝜎2𝑑

𝑛∑︁
𝑡=1

tr(Σ
1

2

0
𝐴𝑡𝐴

⊤
𝑡 Σ

1

2

0
)
)

= 𝑑 log

(
1 + 1

𝜎2𝑑

𝑛∑︁
𝑡=1

𝐴⊤𝑡 Σ0𝐴𝑡

)
≤ 𝑑 log

(
1 + 𝜆1 (Σ0)𝑛

𝜎2𝑑

)
.

This completes the proof. □



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Branislav Kveton, Yi Liu, Johan Matteo Kruijssen, and Yisu Nie

REFERENCES
[1] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. 2011. Improved Algo-

rithms for Linear Stochastic Bandits. In Advances in Neural Information Processing
Systems 24. 2312–2320.

[2] Marc Abeille and Alessandro Lazaric. 2017. Linear Thompson Sampling Revisited.

In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics.

[3] Shipra Agrawal and Navin Goyal. 2012. Analysis of Thompson Sampling for

the Multi-Armed Bandit Problem. In Proceeding of the 25th Annual Conference on
Learning Theory. 39.1–39.26.

[4] Shipra Agrawal and Navin Goyal. 2013. Thompson Sampling for Contextual

Bandits with Linear Payoffs. In Proceedings of the 30th International Conference
on Machine Learning. 127–135.

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of

the Multiarmed Bandit Problem. Machine Learning 47 (2002), 235–256.

[6] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J. Shane Culpepper. 2017.

Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 445–454.

[7] Wei Chen, Yajun Wang, and Yang Yuan. 2013. Combinatorial Multi-Armed

Bandit: General Framework, Results and Applications. In Proceedings of the 30th
International Conference on Machine Learning. 151–159.

[8] Wang Chi Cheung, Vincent Tan, and Zixin Zhong. 2019. A Thompson Sam-

pling Algorithm for Cascading Bandits. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics. 438–447.

[9] Richard Combes, Stefan Magureanu, Alexandre Proutiere, and Cyrille Laroche.

2015. Learning to Rank: Regret Lower Bounds and Efficient Algorithms. In Pro-
ceedings of the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems.

[10] Varsha Dani, Thomas Hayes, and Sham Kakade. 2008. Stochastic Linear Opti-

mization under Bandit Feedback. In Proceedings of the 21st Annual Conference on
Learning Theory. 355–366.

[11] Mark Davenport and Justin Romberg. 2016. An Overview of Low-Rank Matrix

Recovery From Incomplete Observations. IEEE Journal of Selected Topics in Signal
Processing 10, 4 (2016), 608–622.

[12] Qin Ding, Cho-Jui Hsieh, and James Sharpnack. 2021. An Efficient Algorithm

For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thomp-

son Sampling. In Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics.

[13] Louis Faury, Marc Abeille, Clement Calauzenes, and Olivier Fercoq. 2020. Im-

proved Optimistic Algorithms for Logistic Bandits. In Proceedings of the 37th
International Conference on Machine Learning.

[14] Sarah Filippi, Olivier Cappe, Aurelien Garivier, and Csaba Szepesvari. 2010. Para-

metric Bandits: The Generalized Linear Case. In Advances in Neural Information
Processing Systems 23. 586–594.

[15] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. 2012. Combinatorial Network

Optimization with Unknown Variables: Multi-Armed Bandits with Linear Re-

wards and Individual Observations. IEEE/ACM Transactions on Networking 20, 5

(2012), 1466–1478.

[16] Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, and Rebecca Willett.

2017. Scalable Generalized Linear Bandits: Online Computation and Hashing. In

Advances in Neural Information Processing Systems 30. 98–108.
[17] Nathan Kallus. 2018. Instrument-Armed Bandits. In Proceedings of the 29th

International Conference on Algorithmic Learning Theory. 529–546.
[18] Sumeet Katariya, Branislav Kveton, Csaba Szepesvari, and Zheng Wen. 2016.

DCM Bandits: Learning to Rank with Multiple Clicks. In Proceedings of the 33rd
International Conference on Machine Learning. 1215–1224.

[19] Jaya Kawale, Hung Bui, Branislav Kveton, Long Tran-Thanh, and Sanjay Chawla.

2015. Efficient Thompson Sampling for Online Matrix-Factorization Recommen-

dation. In Advances in Neural Information Processing Systems 28. 1297–1305.
[20] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. 2015. Cas-

cading Bandits: Learning to Rank in the Cascade Model. In Proceedings of the

32nd International Conference on Machine Learning.
[21] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. 2015. Tight

Regret Bounds for Stochastic Combinatorial Semi-Bandits. In Proceedings of the
18th International Conference on Artificial Intelligence and Statistics.

[22] Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad

Ghavamzadeh, and Craig Boutilier. 2020. Randomized Exploration in Generalized

Linear Bandits. In Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics.

[23] Tze Leung Lai and Herbert Robbins. 1985. Asymptotically Efficient Adaptive

Allocation Rules. Advances in Applied Mathematics 6, 1 (1985), 4–22.
[24] Shyong Lam and Jon Herlocker. 2016. MovieLens Dataset.

http://grouplens.org/datasets/movielens/.

[25] John Langford and Tong Zhang. 2008. The Epoch-Greedy Algorithm for Contex-

tual Multi-Armed Bandits. In Advances in Neural Information Processing Systems
20. 817–824.

[26] Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. 2018. TopRank:

A Practical Algorithm for Online Stochastic Ranking. In Advances in Neural
Information Processing Systems 31. 3949–3958.

[27] Tor Lattimore and Csaba Szepesvari. 2019. Bandit Algorithms. Cambridge Uni-

versity Press.

[28] Lihong Li, Wei Chu, John Langford, and Robert Schapire. 2010. A Contextual-

Bandit Approach to Personalized News Article Recommendation. In Proceedings
of the 19th International Conference on World Wide Web.

[29] Lihong Li, Yu Lu, and Dengyong Zhou. 2017. Provably Optimal Algorithms for

Generalized Linear Contextual Bandits. In Proceedings of the 34th International
Conference on Machine Learning. 2071–2080.

[30] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. 2016. Collaborative

Filtering Bandits. In Proceedings of the 39th Annual International ACM SIGIR
Conference.

[31] Yi Liu and Lihong Li. 2021. A Map of Bandits for E-Commerce. In KDD 2021
Workshop on Multi-Armed Bandits and Reinforcement Learning.

[32] Xiuyuan Lu and Benjamin Van Roy. 2017. Ensemble Sampling. In Advances in
Neural Information Processing Systems 30. 3258–3266.

[33] Nicolas Della Penna, Mark Reid, and David Balduzzi. 2016. Compliance-Aware

Bandits. CoRR abs/1602.02852 (2016). http://arxiv.org/abs/1602.02852

[34] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning Diverse

Rankings with Multi-Armed Bandits. In Proceedings of the 25th International
Conference on Machine Learning. 784–791.

[35] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen.

2018. A Tutorial on Thompson Sampling. Foundations and Trends in Machine
Learning 11, 1 (2018), 1–96.

[36] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017.

On Application of Learning to Rank for E-Commerce Search. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 475–484.

[37] Rajat Sen, Karthikeyan Shanmugam, Murat Kocaoglu, Alex Dimakis, and Sanjay

Shakkottai. 2017. Contextual Bandits with Latent Confounders: An NMF Ap-

proach. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics.

[38] Andrew Stirn and Tony Jebara. 2018. Thompson Sampling for Noncompliant

Bandits. CoRR abs/1812.00856 (2018). http://arxiv.org/abs/1812.00856

[39] William R. Thompson. 1933. On the Likelihood that One Unknown Probability

Exceeds Another in View of the Evidence of Two Samples. Biometrika 25, 3-4
(1933), 285–294.

[40] R. Wolke and H. Schwetlick. 1988. Iteratively Reweighted Least Squares: Algo-

rithms, Convergence Analysis, and Numerical Comparisons. SIAM J. Sci. Statist.
Comput. 9, 5 (1988), 907–921.

[41] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. 2013. Interactive Collaborative

Filtering. In Proceedings of the 22nd ACM International Conference on Information
and Knowledge Management. 1411–1420.

[42] Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav

Kveton. 2016. Cascading Bandits for Large-Scale Recommendation Problems. In

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence.

http://arxiv.org/abs/1602.02852
http://arxiv.org/abs/1812.00856

	Abstract
	1 Introduction
	2 Setting
	2.1 Many Flavors of Non-Compliance
	2.2 Non-Compliant Bandits

	3 Algorithms
	3.1 Algorithm Designs
	3.2 Reward Model Estimation
	3.3 Compliance Model Estimation

	4 Analysis
	5 Experiments
	5.1 Baselines
	5.2 Compliance Type
	5.3 Model Misspecification
	5.4 Scalability
	5.5 MovieLens Experiments

	6 Conclusions
	A Proof of Theorem 1
	B Technical Lemmas
	References

