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ABSTRACT

Sentiment analysis is a task that may suffer from a lack of data
in certain cases, as the datasets are often generated and annotated by
humans. In cases where data is inadequate for training discrimina-
tive models, generate models may aid training via data augmenta-
tion. Generative Adversarial Networks (GANs) are one such model
that has advanced the state of the art in several tasks, including as
image and text generation. In this paper, I train GAN models on low
resource datasets, then use them for the purpose of data augmen-
tation towards improving sentiment classifier generalization. Given
the constraints of limited data, I explore various techniques to train
the GAN models. I also present an analysis of the quality of gen-
erated GAN data as more training data for the GAN is made avail-
able. In this analysis, the generated data is evaluated as a test set
(against a model trained on real data points) as well as a training
set to train classification models. Finally, I also conduct a visual
analysis by projecting the generated and the real data into a two-
dimensional space using the t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) method.

Index Terms— Generative Adversarial Networks, sentiment
analysis

1. INTRODUCTION
Since their introduction, Generative Adversarial Networks (GANs)
[1] have established themselves as powerful models, outperforming
other generative models in the tasks such as image and text gen-
eration [3, 2]. Variations of GANs, such as Wasserstein GAN [4],
coupled GAN [5] and StackGAN [6], have been proposed to im-
prove upon the GAN architecture for various tasks. Recently, the
application of GANs has also been extended to affective comput-
ing [7] with applications to emotion transformation in images [8],
image and video generation with emotional attributes [9] and emo-
tional data augmentation [10]. In this work, I apply GAN models
to another critical task: low resource sentiment analysis. Although
several sentiment analysis tasks come with sufficient amount of data
to train complex low-error models, large quantities of data may not
be available on newly formed sentiment analysis tasks or other tasks
with constrained resources. In order to improve the classification
performance on such tasks, I experiment with GAN models as a
channel to synthetically generate additional data-points. To achieve
this, I propose a variation of the conditional GAN (cGAN) model [1]
to generate data on low resource datasets. I conduct further analysis
to understand value added by appending the cGAN generated data.

Previous Work: Sentiment analysis [11] is a classical problem
to evaluate the affective states associated with a human opinion or
a reaction given to a given event. Application of machine learning
techniques for sentiment analysis is a widely researched field. Sur-
vey articles such as ones by Liu et al. [12] and Medhat et al. [13]
provide a summary of such techniques. Sentiment analysis has been

previously studied in low resource settings by application of meth-
ods such as transfer learning [14] and semi-supervised learning [15].
The set of techniques proposed for sentiment analysis in absence of
labeled data include manifold regularization [14], semi-supervised
recursive autoencoders [16], document word co-regularization [17]
and latent variable models [18]. On the other hand, GAN mod-
els were proposed in 2014 and a tutorial by Goodfellow [19] pro-
vides a background on GANs. Jing et al. [7] provide a summary on
the application of adversarial Training in Affective Computing and
Sentiment Analysis. I pursue a data augmentation approach to aid
sentiment analysis in this paper. Data augmentation through GANs
has been used in other tasks such as enhancing emotion recognition
through speech [20, 21], human pose estimation [22] and medical
image synthesis [23]. In my work, I use a variant of cGAN and ap-
ply various heuristics to achieve their convergence. This is the first
work that evaluates and analyzes GAN models as data augmentation
tools for sentiment analysis.

In order to train cGAN models that can augment data samples
for a given low resource task at hand, I propose a variant of cGANs
that also uses a baseline classifier trained on the task of interest. I
apply several other tricks to obtain convergence on the cGAN model
training (such as model pre-training, noise addition to the inputs and
one sided label smoothing). I evaluate the thus trained cGAN mod-
els on two different low resource sentiment analysis tasks: (i) movie
review and, (ii) product review. Although, I observe that the data
generated using such cGAN models can by itself be used to train
discriminative models, they provide a marginal gain when appended
to the rest of the available real data. On the movie and product review
datasets, I obtain relative improvements of 1.6% and 1.7% (respec-
tively) against a baseline model only using the real data. I conduct
further analysis on the improvements yielded by data augmentation
as more data is made available for training the cGAN model. To this
end, I use a larger publicly available sentiment analysis data from a
social media platform. I train cGAN models by incrementing data
available during training and observe the gains in sentiment classi-
fication. Finally, I also perform a data distribution analysis (using
t-SNE embedding), comparing the distribution of cGAN generated
data against real dataset. In the next section, I describe the cGAN
architecture used in my experiments, followed by a description of
the low resource datasets.

2. CONDITIONAL GAN SETUP FOR DATA
AUGMENTATION

In this section, I describe the setup for using cGANs in augment-
ing data for sentiment classification. First, I describe the architec-
ture of the cGAN models trained on low resource sentiment analysis
datasets. Followed by this, I describe the training methodology and
tricks for the cGAN architecture.



Fig. 1. cGAN architecture and notations used in my experiments.
The generator parameters are updated based on signals from dis-
criminator and the baseline classifier.

2.1. cGAN architecture

I use a cGAN architecture as shown in Figure 1, inspired by similar
cGAN variants [24] except for the addition of a previously avail-
able baseline classifier (along with the generator and discriminator
components). Below, I briefly describe the three cGAN components.

Generator: The generator is a feed-forward neural network with in-
puts as a noise vector η along with a one hot encoding of sentiment
class yf (e.g., in a binary sentiment classification task yf would
be a two dimensional vector). Given these inputs, the generator is
expected to produce a feature vector xf (a Doc2Vec representation
[25] of sentences in my experiments), which corresponds to the class
encoding yf input to the generator.

Discriminator: Given pairs of real feature vectors xr and the asso-
ciated class vector yr (again in the form of a one hot encoding) along
with the fake feature vectors xf produced by the generator as per
the class encodings yf , the discriminator attempts to classify fake
pairs [xf ,yf ] against the real pairs of data-points [xr,yr]. In my
experiments, the discriminator is also a feed-forward neural network
which accepts inputs as feature vectors concatenated with associated
class embeddings and outputs the probabilities of samples being real.

Baseline classifier: Apart from generator and discriminator as in
a standard cGAN, I also append a baseline classifier trained previ-
ously on the dataset available for the task at hand. In low resource
settings, this classifier is to be trained on the limited amount of data
available. Hence, I chose a shallow neural network as the archi-
tecture for the baseline classifier, as it contains fewer parameters
to be optimized. The objective of appending a baseline classifier
in my cGAN architecture is, given an input class encoding yf , the
generator is encouraged to produce a corresponding sample xf with
high confidence as is adjudged by the baseline classifier. I describe
the cGAN training loss functions and the tricks I use to train the
cGAN model in more details below.

2.2. Training cGAN model

The cGAN model is trained using an algorithm where discriminator
and generator parameters are tuned alternately and iteratively. I do
not update the baseline classifier parameter during cGAN training.
During an iteration, discriminator parameters are tuned to minimize
the cross entropy loss (LD) as defined in equation 1. [xf ;yf ] rep-
resents a vector concatenation of xf and the associated label rep-
resentation yf . D([xr;yr]) and D([xf ;yf ]) are the probabilities
assigned by the discriminator to the pairs [xr,yr] and [xf ,yf ] be-
ing real, respectively. y is 1 for real data-points xr and 0 for the fake
data-points xf .

LD = −y log(D([xr;yr]))− (1− y) log(1−D([xf ;yr])) (1)

After updating the discriminator parameters, I tune the generator
parameters using the loss function LG in equation 2. Apart from the
standard generator loss LG1 to fool the discriminator, I also add an-
other cross entropy loss LG2 between the class prediction returned
by the baseline classifier for xf with respect to the expected class
label yf . The objective of this part of the loss function is to encour-
age the generator to produce xf such that the baseline classifier is in
agreement with the association between xf and yf .

LG = LG1 + λLG2 (2)

Where, LG1 = − log(D([xf ;yf ]));xf = G(η)

LG2 = −CE(yf , C(xf ))
(3)

In equation 3, G(η) represents the output (xf ) yielded by the
generator when the input is a noise vector η. C(xf ) is the prediction
probabilities returned by the baseline classifier on the sample xf for
the sentiment classes and CE(yf , C(xf )) is the associated cross-
entropy. λ is a hyper-parameter to tune relative weights between
LG1 and LG2. I note that the generator from a trained cGAN does
implicitly learn the relationship between xf and yf . The generator
is targeted to produce xf and yf pairs such that the discriminator
can not distinguish the fake pairs against a real pair of xr and yr. I
hypothesize that the explicit addition of LG2 helps the generator to
generate fake pairs for which it is more confident of the association
between yf and xf , particularly in a low resource setting. Apart
from the addition of the baseline classifier, I also use tricks such as
addition of data points from an external dataset, noise addition to the
inputs as well as one sided label smoothing to achieve better conver-
gence of the cGAN losses. I briefly describe these tricks below.

Initialization with other dataset: Since my target tasks come with
a limited amount of training data, I pre-train the cGAN model on a
larger external dataset from a related task. The large dataset helps
the cGAN model to converge to relatively stable parameters, which
can then be fine tuned on the smaller dataset available for the task
at hand. Since I use an external dataset for pre-training the cGAN
models, I hypothesize that increasing λ towards the final few itera-
tions of cGAN optimization can help the generator to tune better to
the low resource dataset.

Noise addition: After pre-training the cGAN model, I add a Gaus-
sian random noise to the in-domain real input feature vectors xf

for each iteration of cGAN training. The injected Gaussian noise
carries a zero mean and a diagonal covariance matrix with values
0.02. Adding noise to inputs is another regularization method for
GANs [19] and prevents the cGAN from over-fitting to the smaller
dataset.

One sided label smoothing: Another trick that I found particularly
useful in my experiments was one sided label smoothing [26]. It
also acts as a regularizer and prevents providing large gradients to
the generator. Hence, the generator parameters do not differ by a
large value after pre-training.

Apart from the above tricks, I use batch normalization and ran-
domly training the generator multiple times in each cGAN training



iteration to achieve better quality fake samples. The training batch
is normalized to carry zero mean and unit variance per feature di-
mension (this implies that the noise added to xr carries a strength of
2%, against the signal strength). In the next section, I describe the
datasets I use in my experiments.

3. DATASETS

My experiments are primarily geared towards two sentiment classifi-
cation tasks: (i) Movie review and, (ii) Product review. The datasets
for the two tasks are described in more detail below:

Movie review dataset: The first dataset used to train cGAN models
for my experiments is the movie review dataset [27]. Each review
in the dataset comprises of multiple sentences, along with an associ-
ated positive/negative sentiment annotation. The dataset consists of
∼2k samples and I perform a 50:50 random split to define training
and testing portions on the dataset.

Product review dataset: The product review dataset [28] consists
of reviews on Amazon, yelp or IMDB. The dataset consists of ∼3k
samples, annotated with positive/negative sentiment label. I split the
dataset into training and testing portions of equal size.

The cGAN model (as well as the baseline classifier used in the
cGAN model) for each dataset is trained using the associated train-
ing split. I conduct a classification evaluation on the testing portion,
as described in the next section. I use the Twitter dataset [29] con-
sisting of ∼1.6M tweets to pre-train the cGAN model. Each tweet
is annotated with a positive/negative sentiment, also yielding a two
dimensional yr for pre-training. The feature representation xf used
in my experiments is a Doc2Vec [25] representation, trained on the
Wikipedia corpus. I note that the cGAN models trained in my exper-
iments are geared towards mimicking the Doc2Vec representations
of the sentences, as opposed to more recent efforts around training
GANs to obtain sentences themselves [3]. This is an avenue I will
consider for future research. The feature and label representations
xf ,yf are common in between the two primary datasets for inves-
tigation and the Twitter dataset. This allows for a pre-training fol-
lowed by fine-tuning without altering the cGAN architecture.

4. EXPERIMENTAL SETUP

I initially train separate cGAN models for movie and review datasets,
using the scheme described in section 2.2. Once trained, I generate
10k fake pairs of feature samples (xf ) and class vectors (yf ) from
the cGAN generator. This fake data is then used to train another
classifier Cf .

Apart from the baseline classifier Cb and classifier trained on
the cGAN data Cf , I also train a classifier Ct on the twitter dataset.
Through Ct, I aim to estimate the performance obtained using a
transfer learning approach. In the next section, I describe my evalu-
ation methodology.

4.1. Results
For each of the three classifiers Cb, Cf , Ct, I report the accuracy
achieved on the test partition of the target datasets. I also report ac-
curacies on a bagged approach, where I combine confidence scores
from either a subset of or all three classifiers before the class assign-
ment. The combination weight is computed based on a small held-
out set from the training portion (we just need to tune three weights,
so a small validation carve out is sufficient). Table 1 reports the ac-
curacies.

Table 1. Classification accuracies obtained on the test partitions of
movie review and UCI dataset using the various classifiers. Perfor-
mance yielded by Cf are significantly better than chance (using a
binomial proportions test at <5% significance level.)

Classifiers used UCI dataset Movie review
Chance 50.0 50.0
Cb 63.3 72.0
Cf 56.3 55.7
Ct 63.9 62.6
Cb, Cf 64.3 73.2
Cb, Cf , Ct 64.5 74.0

From the results, I observe that the accuracies yielded by the
classifier Cf trained on the cGAN generated data is significantly
higher than chance. This implies that the model trained on the fake
data carries discriminative power. Although the Cf accuracies are
not as high as the classifierCb, when bagged together, I obtain better
accuracies on both the datasets. I also observe that the accuracies
yielded by the classifierCt to be higher than chance, indicating that a
transfer of knowledge from the twitter dataset is possible in the other
two datasets of interest. Finally, the best accuracies are obtained by
bagging across all the three classifiers.

5. ANALYSIS ON THE DATA GENERATED USING CGAN
MODEL

Results in the previous section show that the data generated using
cGAN models provide marginal improvements in classification per-
formance in low resource settings. I perform further analysis to as-
sess the impact of data size in training cGAN models, as well as
a visual assessment of the generated fake data. Using the twitter
dataset, I perform two sets of analysis: (i) evaluating the impact of
the training dataset size on the cGAN model and, (ii) a data distribu-
tion analysis using t-SNE projections. I discuss them in detail below.

5.1. Evaluating the impact of the dataset size on cGANs
I evaluate the impact of the size of the available dataset on the cGAN
model in this section. The quality of the cGAN data generated is
evaluated in two settings: when used as a training set as well as a
test set. The setup of my analysis is as follows. Initially, I segment
the twitter dataset into a training ( 600k samples) and test set ( 1M
samples). I train a neural network classifier C full

b on the entire train-
ing dataset. In addition, a cGAN model is trained on a subset of N
samples from the training set (N = 500, 1k, 2k, 4k, 8k). I sample
10k fake feature and class vectors pairs (xf ,yf ) from the trained
cGAN and use them as training and testing sets as described below.

As a test set: In this setting, I use the fake data pairs xf and yf
generated using cGAN as a test set. This setting is same as the one
during cGAN training where the generated data is fed to the baseline
classifier to obtain the cross-entropy loss LG2. For a given xf , I
treat yf as the ground truth. Given a set of N training samples, I
train the cGAN model described in section 2.2. The baseline classi-
fier used in the cGAN models is also trained on the available set of
N training samples. The classifier C full

b trained on the entire training
set is then evaluated on the generated fake data. A better accuracy
on the fake data as test set implies a better trained cGAN as the loss
LG2 in equation 2 is expected to be lower. However, it may not
directly imply a higher quality of the generated data when used to
augment sparse datasets. The accuracies on the fake samples as I
increase N for cGAN training is shown in Figure 2.



Fig. 2. Plot showing accuracies on the generated data when used as
a test set as well as accuracy yielded by a model trained using the
generated data on a real test set.

As a training set: In this setting, I use data generated using cGAN
model as a training dataset (akin to the experiment in Section 4). I
train a shallow NN on the fake data with xf as input features and
yf as target labels. The NN is then evaluated on the real test set
of ∼1M samples. The accuracy yielded by this NN on the real test
set reflects the direct value of the generated data in enhancing clas-
sification through data augmentation. Figure 2 shows the accuracy
achieved on the test set as I increase N for the cGAN training.

Figure 2 suggests that the accuracy of the fake data as test set is
higher than when used as a training set for all values of N . More-
over, as N increases, accuracy on the fake data as test set increases
more rapidly than when it is used as a training set. This implies that
as N increases, the loss LG2 is expected to decrease and the overall
loss value for cGAN is expected to be lower. However, performance
due to data augmentation does not increase commensurately. Also,
the figure suggests that the gain yielded by data augmentation satu-
rates as N increases. This hints towards an upper limit to the gains
yielded by the cGAN model. Overall, I observe that there is a dis-
crepancy in the expected loss decrease in cGAN model training and
the expected increase in performance due to data augmentation. I
conduct further analysis on the cGAN generated data using t-SNE
and observe plausible reasons for this discrepancy.

5.2. Analysis of the generated dataset using t-SNE

In order to further understand the distribution of the data generated
using cGAN models, I project the data into a lower dimension for vi-
sual analysis. Given data-points from the real dataset and fake data
generated using the cGAN, I use the t-SNE method to project the
data into a two dimensional subspace. I sub-sample 2k data-points
from real dataset as well as fake data generated by the cGAN model
trained using 8k samples in the previous section. The t-SNE pro-
jection parameters are obtained on the combination of the fake and
real data-points and Figure 3 shows the distribution of fake and real
data-points. I observe that while the fake data overlaps with the real
data points, it does not completely cover the subspace spanned by
real dataset. This indicates that cGAN is generating data-points in
a limited region of the actual distribution of real data-points. De-
spite the application of tricks mentioned in Section 2.2, I was not
able to obtain a fake data distribution that completely resembles the
distribution of real data. This problem is akin to mode collapse in
GAN models, where a GAN model tends to produce data samples in
a limited region of the feature space.

Fig. 3. Real and fake data distribution, as observed on a 2-D projec-
tion of data-points obtained using the t-SNE method.

It is also plausible that the discrepancy in using the fake data as
training and testing sets in Section 5.1 could be explained by this
difference in the distribution of real and fake data. While fake data
may lie in a region of feature space that could be well classified
by the baseline classifier, a classifier trained on the fake data can
not correctly classify test instances drawn from a region not covered
by the fake samples. I expect that addressing the discrepancy in
the coverage of data distribution can lead to further improvement of
classification. I aim to address this as a part of future research.

6. CONCLUSION
GANs are powerful generative models that have shown state of the
art performance in several tasks related to image and text generation.
In this work, I use a variant of cGAN models to augment training
data for low resource sentiment tasks. Specifically, given Doc2Vec
representation of sentences on datasets with a few training samples,
I train a cGAN model using tricks such as pre-training and noise in-
jection. Followed by this, I generate fake feature vectors from the
generator along with the associated sentiment class labels. Empiri-
cally, I observe that augmenting classification with a model trained
on the fake data provides gains in the low resource sentiment analy-
sis tasks. Further analysis shows that as the number of real samples
for cGAN training increase, a baseline classifier trained on real data
yields better accuracy in classifying the fake data. However, this
does not translate to an equivalent increase in performance on real
test instances when a classifier is trained on the fake data. Further-
more, I observe that fake data does not cover the entire region of
feature space as occupied by real data using the t-SNE analysis.

In the future, I aim to address the observations made in the anal-
ysis of fake data distribution. I aim to consider other techniques to
obtain cGAN models that does not suffer from selective data gener-
ation limited to a smaller region of the feature space (as compared
to the space spanned by real data). Other GAN models that directly
generate sentences are another attractive avenue for such a data aug-
mentation. The results of such as experiment would be more inter-
pretable as one can directly observe the generated sentences. Finally,
other variants of GAN model can be applied to the problem of senti-
ment analysis as well its extensions for this kind of data augmenta-
tion.

7. REFERENCES

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio, “Generative adversarial nets,” in Advances in
neural information processing systems, 2014, pp. 2672–2680.



[2] Emily L Denton, Soumith Chintala, Rob Fergus, et al., “Deep
generative image models using a laplacian pyramid of adver-
sarial networks,” in Advances in neural information processing
systems, 2015, pp. 1486–1494.

[3] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu, “Seqgan:
Sequence generative adversarial nets with policy gradient.,” in
AAAI, 2017, pp. 2852–2858.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou,
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