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Abstract

We introduce Train/Test-Time Adaptation with Re-
trieval (T3AR), a method to adapt models both at train and
test time by means of a retrieval module and a searchable
pool of external samples. Before inference, T3AR adapts a
given model to the downstream task using refined pseudo-
labels and a self-supervised contrastive objective function
whose noise distribution leverages retrieved real samples
to improve feature adaptation on the target data manifold.
The retrieval of real images is key to T3AR since it does
not rely solely on synthetic data augmentations to com-
pensate for the lack of adaptation data, as typically done
by other adaptation algorithms. Furthermore, thanks to
the retrieval module, our method gives the user or service
provider the possibility to improve model adaptation on the
downstream task by incorporating further relevant data or
to fully remove samples that may no longer be available
due to changes in user preference after deployment. First,
we show that T3AR can be used at training time to im-
prove downstream fine-grained classification over standard
fine-tuning baselines, and the fewer the adaptation data the
higher the relative improvement (up to 13%). Second, we
apply T3AR for test-time adaptation and show that exploit-
ing a pool of external images at test-time leads to more ro-
bust representations over existing methods on DomainNet-
126 and VISDA-C, especially when few adaptation data are
available (up to 8%).

1. Introduction
While Deep Learning models are evolving rapidly, ma-

chine learning systems used in production are updated
rarely, as each deployment requires the provider to engage
in a complex process of scaling, securitization, certification
of new model and dataset cards, bias evaluation, and re-
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Figure 1. Adaptation with retrieval from an external data pool.
Illustration of how T3AR exploits target data T and the external
data pool A to adapt the decision boundary after pre-training on
the source datasets S. For new test queries from the target dataset,
T3AR approximates the local data manifold around T by retriev-
ing similar unlabelled examples from A. Then, it updates the de-
cision boundary with a contrastive self-supervised objective.

gression tests. It is now common for users to adapt trained
models to their specific use cases, or to the changed con-
text as time goes by [16, 39, 60]. Such adaptation can be
performed by fine-tuning on a specific dataset S owned by
the user [1,18]. However, on an even finer time-scale, users
may want to adapt their models based on data they observe
at test time, bypassing the time-consuming annotation pro-
cess [8, 35, 53, 57]. Test-Time Adaptation (TTA) refers to
the problem of adapting a source model to a target task T
represented by test data, for which no ground-truth labels
are given.

This trend is exacerbated by the advent of Foundation
Models [2, 10, 38, 59], at least in the visual domain where
tasks can be antagonistic and models are sensitive to even
subtle changes in the data distribution. At the same time,
both users and providers typically have access to ever-
growing pools of auxiliary data, albeit often heterogeneous
(pertaining to concepts other than the one of interest at test-
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time), and without annotations. Yet it seems plausible that,
somewhere within these large pools of data, there may be
information useful for the task at hand.

In this paper, we tackle the problem of performing test-
time adaptation by retrieving information from a large, un-
labeled, heterogeneous, and evolving dataset. The same
procedure could also be followed by the provider, if they
have access to auxiliary internal data and wish to adapt the
production model based on trends observed in test data. We
refer to our method as Train/Test-Time Adaptation with Re-
trieval, or T3AR.

T3AR, if solved, would enable a number of real-world
tasks that have thus far frustrated practitioners. For in-
stance, it would allow a user to select, among a vast data
lake A, which samples to use for a training, based on la-
beled and unlabeled samples [61]. It would also enable nim-
ble inference, by adapting a modest-size model to specific
tasks, rather than relying on an unwieldy model to master
all trades. Finally, it would enable reversible adaptation:
While in the case of language models tasks are generally
synergistic [44], in vision tasks can be antagonistic.1 There-
fore, a model adapted to one task may behave poorly on
another, and a model that encompasses both would require
significantly higher capacity [2, 10, 38, 59], to the detriment
of inference efficiency. In T3AR, changing the target data
T changes the subset of the data pool A that is retrieved,
with no impact on other models, instantiating smaller inde-
pendent models for antagonistic tasks, rather than coercing
them into a larger one, likely multiplying inference costs.

T3AR can be used in a continual setting, where at each
time t one has a different target Tt, and the auxiliary task A
is composed of the union of all prior targets T0, . . . , Tt. The
retrieval system should automatically determine what infor-
mation from whatever past targets is relevant to the present,
and what information is redundant in A and can be elimi-
nated. The important difference compared to ordinary con-
tinual learning is that each step starts with the base model,
so there is no catastrophic forgetting, and what is updated is
the auxiliary task. In other words, the integration of infor-
mation occurs in A, not in the trained model f .

1.1. Related problems

T3AR relates to unsupervised domain adaptation (UDA)
[26, 28, 45], since the target dataset is not annotated. How-
ever, in UDA one assumes that the source dataset S is avail-
able along with the target T , which is not necessarily the
case in T3AR since users may want to bypass annotation
altogether, and directly adapt the pre-trained model using
the auxiliary dataset A, based on the target task T , without
having direct access to S.

1E.g., localization requires marginalizing identity, whereas recognition
requires marginalizing location, making the features that are informative
for one detrimental to the other [2, 38].

T3AR also relates to semi-supervised learning (SSL)
[32, 34, 51], since the target dataset T and the auxiliary
dataset A are not annotated. However, in SSL one assumes
that labeled S and unlabeled data are drawn from the same
joint distribution, which is not the case for T and A in
T3AR , and, in any case we do not aim to infer labels of
A, and just use it to improve the model on the target task.

T3AR is also related to open-set domain adaptation [6,
49], since the auxiliary dataset A is heterogeneous and does
not share the same label space as the source and target task.
It is also related to out-of-distribution detection (OOD) [20,
62], since one needs to decide whether to add samples from
the auxiliary dataset, and to active learning [50], since one
needs to decide what samples to add.

Naturally, T3AR closely relates to test-time adaptation
(TTA) [8, 35, 53, 57, 65], and to memory-augmented or
retrieval-based architectures [3, 11, 36], widely developed
in the language domain [4, 33, 63], where the hypotheses
live in the same space of the data and nuisance variability is
limited to paraphrasing.

In summary, T3AR lies at the intersection of UDA, SSL,
OOD, TTA, Active Learning, and Retrieval, yet it does not
fit neatly into any of them, making both the survey of related
literature (Sect. 2) and experimental assessment (Sect. 4)
non-straightforward.

1.2. Key ideas and contributions

We propose a method to solve T3AR, based on a target
unlabeled dataset T , that selects samples from an auxiliary
dataset A, using a retrieval model R.

Starting from any model fS pre-trained by the provider
on a dataset D and later fine-tuned by the user on a labelled
dataset S, our method finds subsets of an auxiliary dataset
A that are relevant for the target dataset T , using nearest
neighbors in A to samples in T , measured in a representa-
tion space computed by a retrieval model R (in our case, a
CLIP embedding [48]).

The key technical contribution is a contrastive loss used
for updating the model fS to a new model fA|T , whereby
negative pairs are selected by retrieving samples from the
external dataset A that are informative of T using the re-
triever R. Furthermore, to improve training stability, we
exclude same-class negatives pairs from T by exploiting as-
signed pseudo-labels obtained by averaging predicted log-
its on different data augmentations. Our method can be
thought of as a form of contrastive “dataset augmentation”
by enlarging the user data with samples drawn from a dif-
ferent (unlabeled) dataset A, based on guidance provided by
a retriever R. This procedure can be followed by both the
user and the provider, thus empowering them to adapt the
core model (train-time adaptation) or a sequence of disjoint
custom models (test-time adaptation).

We show that applying T3AR improves downstream
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classification accuracy over the paragon supervised fine-
tuning [1, 18] for train-time and test-time adaptation meth-
ods [8, 35, 57] for test-time. In particular, as the number of
data available during adaptation decreases, T3AR improves
by up to 13% and 8% in relative Top1 accuracy at train and
test time, respectively.

2. Related work
As we anticipated in the introduction, the problem we

tackle has close connections with a number of areas of
investigation in machine learning, including UDA, SSL,
OOD, TTA, Active Learning, and Retrieval.

UDA and TTA Unsupervised Domain Adaptation (UDA)
has a long history and it has been explored in a variety of
different visual tasks, image classification [26, 28, 45], ob-
ject detection [13] and semantic segmentation [55]. The
main goal of UDA methods is to reduce the performance
drop of pre-trained models when deployed on shifted tar-
get domains without using any target annotation. One of
the most successful ideas in UDA literature is source and
target feature space alignment. For example, [37] exploits
Maximum Mean Discrepancy, [45] leverages a multi-source
moment matching objective, [26] uses a non adversarial
reduction of the class confusion and [28] employs a con-
trastive adaptation objective to model intra-class and inter-
class domain discrepancy. However, all these methods re-
quire knowledge of the target distribution before model de-
ployment, which highly limits their applicability in the wild.
On the other hand, typical test-time adaptation (TTA) meth-
ods only use the target dataset during adaptation [8,57] and
usually no modification to the pre-training loss is allowed (a
notable exception is [53]). Therefore, test-time adaptation
is carried out exploiting regularities between source S and
target data T . For example, it is often assumed that the tar-
get data shares the same class distribution with the source
one, or that the un-adapted decision function is not far from
the target [57]. Under these assumptions, [57] minimizes
the entropy of the predictions to quickly adapt a given pre-
trained model. [65] takes this approach one step further and
exploits different synthetic data augmentations to further
improve performance. Among other test-time adaptation
methods, AdaContrast [8] is the closest to our solution since
it leverages a contrastive loss for adaptation. However, as
in previous methods, only synthetic data augmentations are
used to construct the self-supervised contrastive loss. On
the other hand, our method is not bounded to synthetic data
augmentations and augments samples in T by leveraging
other real data to better capture the variability in T .

While T3AR is close to TTA [8, 35, 53, 57], it differs in
that we expect that the dataset used for adaptation is not just
T , which is assumed to share the same label space of S, but
also A, a typically very large dataset largely irrelevant to T .

Hence, we leverage a retriever R to find the needles in the
haystack, an element not present in the TTA literature.

Retrieval/memory augmented models Recently, re-
trieval based models have been used to solve symbolic ma-
nipulation [22], anomaly detection [21], image generation
[11] and image classification [36]. In particular, [36] shows
that augmenting a standard image classification model with
an explicit image retrieval module highly improves accu-
racy on long tailed classification datasets. [11], instead, uses
retrieved images as guidance for generating highly detailed
uncommon concepts. Retrieval based models have also
found applications on other domains other than Computer
Vision. For example, in the NLP domain, several recent
methods leverage large corpora to augment pre-trained large
language models predictions with a non-parametric mem-
ory module [4, 12, 33, 63]. In particular, [4] shows that aug-
menting a large pre-trained language model with an external
indexable database has mainly one advantage: higher per-
formance w.r.t. the number of deployed parameters, which
in turn unlocks the use of smaller/faster models that are
less likely to memorize the training data. However, this
result has yet to be reliably verified for large scale com-
puter vision models. One of the main reasons for this dis-
crepancy is that in the language domain the query and the
data/representation live in the same space, so the answer to
a query, expressed as a string of text, is a string of text which
may potentially be in the knowledge base or easily interpo-
lated from it. However, in the image domain it is usually not
reasonable to assume that the answer to a given query al-
ready exists in some indexable database or knowledge base
(e.g. downstream labels might differ from pre-specified la-
bels in the knowledge base or database). Hence, in our case,
we do not assume the auxiliary dataset A has ready answers
to our queries.

3. Method
We assume that there is a provider who pre-trains a

model g on a dataset D obtaining gD : X → Z where
X are RGB images and Z = Rd where d is the dimension
of the feature space. Here, D is a large dataset which is typ-
ically not accessible after pre-training and may, with time,
become obsolete.

A user has access to gD, but wishes to improve it on a
specific dataset S to build a custom classifier fS : X →
Y , using gD as a backbone, and fine-tuning it along with a
linear layer.

Test data owned by the user and optionally made avail-
able to the provider, is drawn from an unlabeled dataset T ,
which may be different from both S and D, but shares the
same hypothesis space Y of S [8,53,57]. In particular, there
may be a domain shift from S to T , or the two may per-
tain to entities, such as products or fashion, that evolve over
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Figure 2. Our proposed framework. Given an image x from the unlabeled dataset T , an auxiliary external dataset A, and a retrieval
method R, T3AR strongly augments x with t′ and stores the logits and features in a memory bank. Moreover, for each image x in T
an independent retrieval system R (e.g. CLIP) retrieves from an external data pool A a given number of related images that are strongly
augmented and saved as features into the same memory bank (logits of retrieved images are discarded). At each iteration, for each
image x “filtered” pseudo-labels are generated leveraging logits in the memory bank. Pseudo-labels are then used both as targets to train
the class predictor on weakly-augmented images with t′ and as supervision for the contrastive loss. The contrastive loss is computed
following instance discrimination on the augmented views of the same image against embeddings of images with different pseudo-labels
and embeddings retrieved from the auxiliary pool of data A.

time. If such out-of-distribution phenomenon is manifest
in the test samples, not only gD, but even fS will perform
poorly.

The goal of T3AR is to train an adapted model, lever-
aging an auxiliary dataset A, starting from fS , but without
directly accessing S, and leveraging instead unlabeled data
from T available at inference time. We call the resulting
adapted model fA|T , where the dependency on S is implicit
in its pre-training. We note that A may be a private dataset,
accessible to the user but not the provider. Conversely, the
provider may have an internal dataset that may be avail-
able to adapt the model to commonly observed tasks from
opted-in users, using the same process followed by the user
to perform test-time adaptation.

The goal of T3AR is to train a model fA|T that improves
the baseline fS and gets as close as possible to the paragon
which is to train with the entirety of the datasets D,S,A and
T . To this end, we consider any generic pre-training gD
and fine-tuning fS , and perform retrieval by finding sub-
sets of A that are informative of T . We do so by finding
nearest neighbors of samples of T in A using CLIP embed-
ding space computed by a retrieval model R. We then per-
form aggregation to combine T with A into an “augmented
training set”. This is the key technical contribution of our
work and is implemented as follows. Given each datum in

x ∈ T , we create multiple augmentations xi, and use fS to
compute the corresponding pseudo-labels. Then, we con-
sider a contrastive loss whose objective is to pull closer fea-
tures of different views (positive pairs) while pushing away
features of different images (negative pairs). We consider as
negatives the retrieved samples from A that are neighbors to
T with R and samples in T with negative pseudo-labels.

T3AR finds samples in A that are synergistic with T as
contrastive neighbors and avoids pushing away same-class
pairs to learn better semantically meaningful clusters. Re-
dundant information is avoided simply by removing sam-
ples with near-duplicate embeddings according to R [3, 4].

Note that the contrastive loss does not update the linear
classifier but only the features. So, T3AR updates the clas-
sifier fA|T with supervision from pseudo-labels generated
from T [8, 34, 51].

We now describe each component of method in detail.

Retrieval module Since the search cost scales with the
data pool size any slow retrieval algorithm is not a feasible
solution [42, 61]. We therefore use a fast retriever R whose
main goal is to filter irrelevant data in A given target sam-
ples in T (e.g. out-of-distribution or near duplicate).

The retrieval module consists of a general image encoder
R : X → Rd, that we use to index the auxiliary pool of
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images A. We note that different retrieval systems lead
to largely different retrieval distributions that mostly de-
pend on the invariance classes imposed during the retrieval
pre-training objective. For example, a CLIP model [48] is
trained to match images with likely captions, while a self-
supervised model (e.g. DINO [7]) is trained to be invariant
to per-sample synthetic data augmentations. We evaluate
the impact of the retrieval choice in Tab. 3. Differently from
[4, 8], we do not use specialized fast approximate nearest-
neighbor search (such as FAISS [27] or SCaNN [23]). In-
stead, we simply use a brute force search on the most sim-
ilar keys (embedding indexes), since when the size of the
external database does not exceed 10M the time reduction
of approximate nearest neighbor search is minor.

Encoder initialization Since T3AR does not impose any
restriction on the objective used to pre-train gD, we shall
consider models pre-trained both with a supervised [18] or
self-supervised [7] objective (see Tab. 1).

3.1. Learning objective

Our learning objective consists of two parts. First, a self-
supervised objective function that is used to incorporate re-
trieved information from A both at train and test time (see
Sec. 3.1.1). Second, a cross-entropy objective that is driven
by ground truth labels at training time and by pseudo-labels
at test time (Sec. 3.1.2).

3.1.1 Retrieval-augmented objective function

In this section we describe the self-supervised objective
function that we exploit to incorporate information from A.
Inspired by recent advances in self-supervised objective de-
signs [7, 9, 24] we exploit a contrastive objective driven by
pairwise information. In particular, we follow the instance-
discrimination principle: features of different views of the
same image (positive pairs) are pulled closer, while features
of different images (negative pairs) are pushed away. The
key insight is that, even in presence of domain shift, the
contrastive loss discriminative power increases with more
negative samples [9, 30]. However, adding easily separable
negatives does not provide much learning signal. We there-
fore use the retrieval module R to modify the noise distri-
bution and gather images that serve as harder negatives.

Retrieval-augmented contrastive loss As in [8], given
an image x, we create a weakly augmented view t(x) and
a strongly augmented view t′(x). Then, we apply the In-
foNCE loss on q = g(t(x)), k = g(t′(x)) and the set of
strongly augmented negatives Nq . Here, g denotes the last
layer features (before the classifier head) extracted by the
model fA|T being trained and the set Nq ⊂ A ∪ T is com-

posed of different-class samples from T and by retrieved
samples from A (nearest neighbors of x according to R).

Lctr(x) = − log
exp(q · k/τ)∑

j∈Nq
exp (q · kj/τ)

(1)

where τ is a temperature hyper-parameter and all kj are
feature embeddings stored in a memory bank of length np

that is updated by appending the new embedding k at each
step [8, 24].

As observed in [8, 9, 24, 30], the InfoNCE loss in Eq. (1)
might strive to minimize the cosine distance between q and
k while maximizing the cosine distance of q and all the neg-
atives in the denominator. In particular, not pushing away
same-class pairs helps in building a feature space that is
more aligned with the semantic of the downstream task.
Therefore, when the label information (or pseudo-labels) is
available, we modify Nq not to include samples with the
same label y (or pseudo-label ȳ) of x:

N lab
q := {j | y ̸= yj} ∪ ∅ (2)

In Sec. 3.1.2 we describe how to compute pseudo-labels ȳ
on the target set T .

Furthermore, we leverage the auxiliary data available in
A to increase the number of negatives. However, as ob-
served in [54] naively leveraging a large pool of uncurated
data in a self-supervised contrastive loss might not lead to
performance improvements since negatives can be less in-
formative (easy negatives). To overcome this limitation we
leverage the retrieval system R whose task is to gather more
relevant negatives (hard negatives). More specifically, we
build N ret

q := NNnr (q) as the set of nr nearest neighbors
of x from A. Note that only retrieving from the nearest
neighbors might be counter-productive, since many nearly
duplicate images could be retrieved and considered as neg-
atives. This phenomenon gets sharpened if there is small/no
distribution shift between adaptation data and the external
pool of samples. T3AR solves this with a simple dedupli-
cation strategy applied to the retrieved data. We propose to
randomly extract k samples among NNr×nr

(q), i.e. we first
select the top r · nk retrieved data, and then uniformly sam-
ple a subset of k samples. In this way, even if the topmost
retrieved samples are near duplicates to the query image the
likelihood of treating them as negatives is reduced. In our
experiments we find that r = 5 is a robust choice across
different experiments.

To conclude, the set of negative examples we use in
Eq. (1) is Nq = N lab

q ∪N ret
q .

Ground truth labels vs pseudo-labels In T3AR it is pos-
sible to adapt pre-trained models not only at test-time (by
the user) but also at train time (by the service provider) as
new data become available. In the latter case, ground truth
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labels might be available and should not be discarded. Our
method can be modified to work with ground truth labels
by incorporating them into its main objective in place of
pseudo-labels so that ground truth labels are used to avoid
same-class negatives in Eq. (1) and are used to directly su-
pervise the model predictions. On the other hand, at test-
time (when ground truth labels are not available), T3AR
exploits the close-set assumption and uses pseudo-labels
[8, 34]. However, the quality of pseudo-labels is important,
in Sec. 3.1.2 we propose a simple refinement strategy to get
higher quality “filtered” ones.

3.1.2 Supervised/weakly-supervised objective

Since the contrastive loss does not update the linear classi-
fier but only the features of the predictive model, we incor-
porate supervision into the objective function by exploiting
labels y (if available) or, more generally, pseudo-labels ȳ,
that are generated by the hypothesis fA|T [8, 34, 51]. How-
ever, pseudo-labels are known to be noisy, especially if T is
different from S [8, 34], therefore we propose to further re-
fine them by leveraging other augmented views of the same
image x [65].

ȳ(x) = argmax
i

f̄A|T (x) (3)

where f̄A|T (x) is obtained by averaging logits with respect
to strong synthetic data augmentations of x. To improve
efficiency of our method and reduce training time [8,34], we
implement this exploiting a memory bank which contains
past predicted logits and features (see Sec. 3.1.1).

We note that using “filtered” pseudo-labels to guide
model adaptation can be interpreted as a form of consis-
tency regularization or distillation, which, in the case of
semi-supervised learning, has the main objective of prop-
agating known labels towards unlabelled samples [34, 51].
Overall, our supervised loss/consistency regularization is
implemented as:

Lce(x) = Ex∈Dt
H(ȳ(x), fA|T (t(x))) (4)

where H(a, b) = −
∑C

c=1 ac log bc and ȳ(x) is the “fil-
tered” pseudo-label.

4. Experiments
4.1. Experimental setup

We evaluate T3AR on standard train and test time adap-
tation benchmarks. At train-time, T3AR is applied on
fine-grained classification datasets as done in [1, 18]. In
particular, we use MIT-67 [47], CUB-200 [56], FGVC-
Aircraft [40], Stanford Cars [31], Stanford Dogs [29]. At
test-time, following [8], we use a closed set benchmark
composed of VisDA-C [46] and DomainNet-126 [45] (we
use DomainNet-126 and not DomainNet since the latter has

Table 1. Comparison with transfer learning baselines. Classi-
fication Top1 Accuracy (%) on fine-grained downstream datasets.
Bold is the highest. Comparison of T3AR with supervised trans-
fer learning (fine-tuning) on ResNet50. We show that T3AR per-
forms on par with a strong supervised fine-tuning baseline on high
shot fine-grained tasks. Moreover, when the number of samples al-
lowed during adaptation is reduced (20% of the original datasets)
we show that the use of an external data pool of images allows
T3AR to perform better on different fine-grained tasks.

20% of samples 100% of samples
Sup. Self Sup. Sup. Self Sup.

Dataset Sup. FT T3AR Sup. FT T3AR Sup. FT T3AR Sup. FT T3AR

Stanford Cars 61.4 66.0 31.7 64.6 93.5 93.5 93.2 93.0
Aircrafts 11.8 35.0 39.9 60.0 86.4 88.4 88.2 89.1
CUB200 52.0 55.5 27.7 43.6 82.2 82.4 80.0 80.3
MIT-67 60.9 67.6 62.8 66.4 77.2 77.6 76.8 75.9

Stanford Dogs 86.8 87.3 40.9 56.5 92.2 89.6 76.5 81.9

noisy labels [8]). DomainNet-126 contains 126 concepts
shared across four domains (Real, Sketch, Clipart, Paint-
ing), while VisDA-C is a 12 class dataset that focuses on
synthetic-to-real adaptation. To build the large pool of ex-
ternal data A we use images (without labels) from the fol-
lowing datasets: ImageNet1k [17], iNaturalist 2019 [25],
Food-101 [5], Logo 2k+ [58], NWPU-RESISC 45 [14],
iMaterialist Product [41]. Overall, size of the auxiliary
dataset A is ≈ 2M images aggregated from a range of dif-
ferent domains and applications.

Baselines For test-time adaptation we compare our
method with both Unsupervised Domain Adaptation and
Test-Time Adaptation methods. For UDA methods, we
compare to CAN [28] and MCC [26] since they have been
reported to be the best performing methods on our chosen
benchmarks. For TTA we compare with TENT [57], SHOT
[35] and AdaContrast [8]. We do not directly compare with
TTT [53] since it requires to modify the pre-training ob-
jective function and is therefore not a truly test-time only
adaptation method. All the baseline results on train-time
training are obtained following supervised fine-tuning best
practices (e.g. data augmentations such as MixUp [64] and
RandAugment [15], linear warmup and cosine annealing
learning rate schedules [19]) and running extensive hyper-
parameter search (see Sec. C for details). Similarly to
previous works [1, 8, 18], we use ConvNets architectures
(ResNet50/101) pre-trained using both supervised [18] and
self-supervised [7] objective functions on ImageNet1k.

4.2. Train time model adaptation with retrieval

At train-time T3AR takes as input a model pre-trained
on some pre-training data (either with supervision or self-
supervision), a labelled dataset S and large database of im-
ages A and adapts the pre-trained features to the down-
stream task. Performance is evaluated on held out data T
that is not used for further adaptation. This mimics the typi-
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Table 2. Comparison with UDA and TTA baselines. Avg. Clas-
sification accuracy (%) on 7 domain shifts of DomainNet-126 and
on 1 domain shifts of VisDA-C train → val for different target T
dataset sizes (1%, 10% and 100%). Bold is the highest. T3AR
achieves the highest average performance when few samples are
available for adaptation, 1% and 10% of the whole dataset.

Method DomainNet-126 VisDA-C
1% 10% 100% 1% 10% 100%

CAN [28] - - - - - 87.2
MCC [26] - - 48.9 - - 78.8

Source only 55.6 55.6 55.6 43.8 43.8 43.8
TENT [57] 53.7 54.0 57.7 45.7 46.9 49.2
SHOT [35] 57.2 64.1 67.1 63.6 69.1 83.0

AdaContrast [8] 60.6 65.8 67.8 68.3 72.8 87.2
T3AR 63.5 66.3 67.5 70.2 77.5 85.9

cal model customization scenario (transfer learning [1, 18])
solved with supervised fine-tuning. In this section, we pick
S to be a labelled fine-grained classification dataset from
the ones listed in Sec. 4.1.

In Tab. 1 we test how much retrieving samples from A
help T3AR at training time. We compare T3AR adaptation
against supervised fine-tuning of two different pre-trained
backbone models both in the high and low data regime (see
Sec. E for details on datasets subsampling). Therefore, we
either use the whole downstream dataset (100%) or we sub-
sample it by keeping only 20% of the labelled training data
(all the remaining data are discarded, and no further used).
Our models are pre-trained with a supervised objective or a
self-supervised one on ImageNet1k. Note that T3AR, com-
pared to the baselines, improves feature adaptation in both
data regimes and it is effective regardless of the backbone
choice. In particular, supervised pre-trained features im-
prove 13%/5% while self-supervised 30%/4% on the low
and high data regime respectively. Our results show that A
can be leveraged to add relevant information during adap-
tation even if the external data come from a different distri-
bution. We further study the effect of adding more retrieved
samples in Sec. 4.4, our results suggest that increasing the
number of retrieved images saturates relatively early and
the trade-off between computational cost (the more the re-
trievals the higher the training time) and performance is rel-
atively stable across different datasets. In particular, the per-
formance starts saturating as soon as the retrieved dataset is
twice as large as the training dataset Fig. 8 in the appendix.

4.3. Test time model adaptation with retrieval

At test-time T3AR takes as input a model pre-trained on
the source dataset S whose labels space is the same as the
one in the unlabelled target set T . However, the distribution
of images in S need not be the same as in T (covariate shift).
The performance of our method is evaluated on the average
Top1 accuracy on different domains (7 for DomainNet-126

Table 3. Do we need an expert retrieval module? We compare
train-time downstream Classification Top1 Accuracy (%) of T3AR
on fine-grained classification tasks when equipped with random or
expert retrieval module (e.g. CLIP, DINO). Even a non expert re-
trieval system does not jeopardize generalization. Nonetheless, the
average relative performance drop w.r.t. to expert retrieval systems
is ≈ 25%. And the stronger CLIP retrieval leads to better results.

Dataset Random R DINO CLIP

Stanford Cars 61.4 62.4 66.0
Aircrafts 18.4 31.6 35.0
CUB200 48.2 54.0 55.5
MIT-67 62.2 66.6 67.6

Stanford Dogs 83.9 86.9 87.3

and 1 for VisDA-C). As in previous experiments, the auxil-
iary data pool A is taken as the concatenation of the datasets
listed in Sec. 4.1. To compare our results with TTA lit-
erature [8, 35, 57], and only in this experiment, we fix the
pre-trained backbones as the ones used in [8]. More specif-
ically, we add a 256-dimensional bottleneck consisting of a
fully-connected layer followed by a BatchNorm layer after
the backbone, and apply WeightNorm on the classifier, for
more details we refer to [8].

Previous results in the literature [8,35,53,57] assume that
all target data T are used for adaptation. However, rely-
ing on plenty of samples for adaptation, even if unlabelled,
could be a limiting factor in many real world scenarios. In
Tab. 2 we test the capability of T3AR to efficiently adapt
when little target data are available (1%, 10% and 100%
of T ). T3AR achieves high Top1 average accuracy both
on DomainNet-126 and VisDA-C benchmarks. In particu-
lar, the fewer the data available at test time the higher the
performance gap w.r.t. other state of the art methods. As
in the train-time experiment, we observe that the retrieval
system plays an important role. In fact, while other meth-
ods [8, 35, 57] mainly rely on synthetic data augmentations
to compensate for the lack of target data, our method also
leverages retrieved real images that enable the learned fea-
tures to better approximate the target data manifold.

4.4. Ablation studies

Do we need an expert retriever R? And does distribu-
tion shift of A w.r.t. T impact performance? Intuitively,
the performance of T3AR could be upper bounded by the
Top-1 accuracy of its retrieval system. And the higher the
domain gap of the retrieved samples from A w.r.t. target
data in T the worse the downstream performance gets.

In Tab. 3 we answer the first question by comparing a
random retrievals, and two expert retrieval systems, one
based on DINO [7] and the other based on CLIP pre-
training [48]. Both DINO and CLIP embeddings achieve
high performance on zero-shot classification on the fine-
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Figure 3. How much distribution shift can T3AR tolerate? We
compare T3AR in a train time setting on fine-grained classifica-
tion datasets as the domain gap between the adaptation data and
the auxiliary data A increases. To artificially control the distribu-
tion shift we progressively include more adaptation data, which
are more likely to be retrieved, to the external pool. The higher the
domain gap the lower the performance.

grained datasets we use (see Sec. B). In particular, in Tab. 3
we show that even a non-expert retrieval system does not
completely jeopardize generalization, the average relative
performance drop w.r.t. to an expert retrieval system is
20/25% and, for some datasets, it is comparable with the
supervised fine-tuning results in Tab. 1. This observation
suggests that even randomly retrieved images can act as a
generic regularizer and do not harm generalization.

In Fig. 3 we answer the second question by artificially
introducing a controlled distribution shift on the retrieved
samples. In particular, we progressively include more data
from the adaptation domain in the external pool that, in turn,
are more likely to be retrieved by R. We note that the higher
the domain gap is the lower the final accuracy gets, since
finding hard (informative) negatives becomes harder.

Impact of the size of A. We test the sensitivity of T3AR
to the size of the external set by using a 10% subset of A,
ImageNet-21k and its subset ImageNet-1k. In Tab. 4, we
show that increasing the size of the external data pool leads
to higher average accuracy. However, using larger datasets
is not as helpful as having better domain coverage. The
gaps are 0.4% (Subset-A → A), 0.7% (Subset-IN21k →
IN21K), 1.2% (Subset-IN21k → A), 0.5% (IN21k → A).
Interestingly, differently from [43] no task competition is
present in T3AR. In fact, thanks to the retrieval module that
ignores what is not relevant, increasing the external dataset
size strictly improves results.

Impact of the domain coverage of A. We replace our
external dataset of 2M images with a 2M random subset
of ImageNet-21k. In Tab. 4 we show that T3AR still im-
proves over the baselines of not using an external data pool
(54.6% → 62.0% for train-time adaptation and 69.3% →
70.6% for test-time adaptation). However, our choice of A
has better overall results (62.3% and 71.9% for train and
test time respectively) due to better domain coverage.

Ablation over the composition of A. In Tab. 4 we ab-
late over the datasets used to build A. Removing ImageNet-

Table 4. Ablations on the external dataset. Accuracy on
downstream tasks (rows) when using different external datasets
(columns). Results are reported on the same 20% subsets used for
train time experiments (see Tab. 1) and 10% subsets used for test
time experiments (see Tab. 2). By A-IN1k, A-iNat, A-Logo we
denote A ablated of the corresponding dataset.

A IN1k IN21k A-IN1k A-iNat A-Logo
SOTA 100% 10% 100% 15% 100%

Cars 61.4 66.0 65.8 65.6 66.8 67.3 60.3 (-5.7) 65.2 (-0.8) 65.2 (-0.8)
Air. 11.8 35.0 33.8 33.2 31.9 32.8 17.8 (-17.2) 34.3 (-0.7) 34.7 (-0.3)

CUB 52.0 55.5 55.1 53.7 53.7 54.5 53.4 (-2.1) 54.0 (-1.5) 55.4 (-0.1)
MIT 60.9 67.6 67.5 67.1 67.7 68.5 64.5 (-3.1) 67.4 (-0.2) 67.3 (-0.3)
Dogs 86.8 87.3 87.2 87.2 86.9 86.9 82.1 (-5.2) 86.8 (-0.5) 86.9 (-0.4)

Train Avg. 54.6 62.3 61.9 61.4 61.4 62.0 55.6 (-6.7) 61.5 (-0.8) 61.9 (-0.4)

DNet-126 65.8 66.3 65.7 63.8 64.5 64.7 57.6 (-8.7) 63.2 (-3.1) 62.8 (-3.5)
VisDA-C 72.8 77.5 77.0 76.6 75.1 76.5 66.8 (-10.7) 77.2 (-0.3) 76.8 (-0.7)

Test Avg. 69.3 71.9 71.4 70.2 69.8 70.6 62.2 (-9.7) 70.2 (-1.7) 69.8 (-2.1)

Avg. 58.8 65.0 64.6 63.9 63.8 64.5 57.5 (-7.5) 64.0 (-1.0) 64.2 (-0.8)

1k from the external pool leads to 7.5 % average drop in
performance, while dropping iNaturalist or Logo 2k is not
as harmful and the average gap is ≈ 1%. In particular, we
found that IN-1k (the largest dataset in A) provides most of
the retrieved samples (more than 85%) both during Train-
and Test-Time adaptation. However, there are some excep-
tions: CUB200 retrieves half of the data from iNaturalist,
while DomainNet-126 (on all domains) retrieves more than
15% samples from Logo-2k and 5% from iNaturalist.

Sensitivity to the number of retrievals In Sec. F in the
appendix we study the sensitivity of T3AR to the num-
ber of allowed retrieved images. Our results across dif-
ferent datasets show a diminishing return in performance
as the number of NNs increases (see Fig. 8). Since re-
trieving more samples increases (linearly) adaptation time,
our experiments suggest that a trade-off, to discount com-
pute over marginal accuracy improvements, is to retrieve no
more than twice as many samples as the target dataset.

5. Conclusions

We introduced T3AR to adapt pre-trained models both
at train and test time by means of a retrieval module and a
searchable pool of auxiliary samples. Differently from pre-
viously proposed methods [8, 65] that by-pass the lack of a
adaptation data by introducing specific self-supervised ob-
jectives driven by data augmentations, T3AR builds a self-
supervised objective that is driven by real data, thus better
capturing the target real data manifold. Furthermore, sim-
ilarly to [8, 34], T3AR exploits “filtered” pseudo-labels to
align the output distribution of the model to the downstream
class labels. T3AR improves downstream fine-grained clas-
sification over standard fine-tuning baselines. Moreover, we
compared our method against state of the art test-time adap-
tation algorithms [8, 35, 57, 65] and showed that it resulted
in more robust and generalizable features, especially when
the available data at test-time are scarce.
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Supplementary Material

A. Implementation details
A.1. Architectures

In our main experiments we use supervised and self-
supervised pre-trained ResNets from [52] and [7] respec-
tively. We implement the expert retrieval systems using a
ViT-B/16 CLIP model [48] and a ResNet50 DINO model
[7] (see Tab. 5 for a zero-shot evaluation on both the down-
stream fine-grained datasets as well as on the auxiliary
datasets used in A). Note that the cost to search in the
auxiliary dataset A is linear with its size and efficient ap-
proximate search methods exist [23,27], however, when the
number of images to search is < 10M a brute force solu-
tion is still very fast since image embeddings can be stored
in GPU memory and the search simply involves a matrix
multiplication.

Moreover, for a fair comparison with [8], only in
the TTA experiments, we follow [8, 35] and add a 256-
dimensional bottleneck consisting of a fully-connected
layer followed by a BatchNorm layer after the pre-trained
backbone, and apply WeightNorm on the classifier. We
consider the lower dimensional bottleneck as a projection
layer and therefore drop the original projection heads used
in MoCo [24] without any performance drop.

A.2. Memory bank

In this section we describe the memory bank introduced
in Sec. 3.1.2. We use a memory bank as in [8, 24, 34] to
allow for a larger set of negative examples without requiring
more forward passes (and more GPU memory) and to store
previously computed logits that are subsequently used to get
“filtered” pseudo-labels.

We maintain a memory queue M of size mb through-
out training. M contains both the last layer features g of
samples from T and A and the logits of samples from T
according to the current model fA|T .

M =
{
g(t′(x)), fA|T (t

′(x))
∣∣∣x ∈ T

}
∪
{
g(t′(x′))

∣∣∣x′ ∈ A
}

(5)
where t′ is a weak augmentation, T the target dataset and
A the auxiliary external dataset. Note that we do not keep
track of pseudo-labels (or logits) in A since we do not as-
sume that A contains the same label space of T . M is ini-
tialized with features and probabilities of mb randomly se-
lected target samples. And, at each mini-batch we update
M by enqueue and dequeue similar to [8, 24, 34], where
the momentum encoder is used with m = 0. The memory
bank is updated on-the-fly with the current mini-batch and,
together with features and logits. We also keep track of the
unique image IDs that are used to aggregate logits and avoid
using same image as negative samples. Furthermore, since

our retrieval system R is fixed throughout training, for each
sample in T (indexed by its unique ID) we associate a list
of nearest neighbors in A that does not change and we use
it to efficiently find the nearest neighbours present in M at
each iteration.

B. Expert retrieval systems zero-shot evalua-
tion

In this section we compare the zero-shot performance
of our retrievers both on the fine-grained and the auxiliary
datasets used to build A. First, for each dataset in the list of
fine-grained/auxiliary datasets we compute image embed-
dings using an embedding model (ViT-B/16 or ResNet50
DINO) without using any data augmentation. This process
is very fast, though it scales linearly with the dataset size,
and its cost is essentially the cost of a single forward pass for
each image to be indexed. Second, we store all the image
embeddings in memory (this typically requires 100 times
less memory than storing an image at 224× 244 resolution)
as well as their labels. Third, for each test image on a given
dataset we compute its k-NNs from the list of embeddings
and aggregate the corresponding labels (majority voting).

In Tab. 5, we compare the retrieval models with expert
models that are trained on each dataset independently. Note
that the CLIP model is strictly better than DINO in zero
shot Top1 accuracy and it also competes with a fully trained
model on multiple datasets. As we observed in Tab. 3 the
stronger the retrieval the better the performance since more
discriminative negative samples are used in the contrastive
objective Equation (1).

Figure 6. Visualization of samples retrieved from A. Top row:
First panel, distribution of CLIP similarity scores on A for the
given query image. Third image, low CLIP score, forth image
high similarity. Bottom row: 7-th closest image to the given query
according to CLIP and DINO. Their top ranked images are often
the same but DINO’s ranking gets worse faster. Indeed, on the
datasets composing A, DINO is a weaker zero-shot retrieval sys-
tem than CLIP Tab. 5.

C. Tuning details
In this section we report the hyper-parameters that we

use both for our training-time and test-time adaptation ex-
periments. In particular, for train-time experiments we used
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Table 5. How expert are the retrieval systems? Retrievals Top1
Accuracy (%) on the best number of k-NNs. We treat the number
of NNs as a hyper-parameter and report the highest accuracy re-
sults where k is selected on a small validation dataset (10% of the
training dataset). Furthermore, we report the accuracy of strong
experts models ResNet50 (RN50) and ResNet101 (RN101) trained
independently on each dataset of the external pool [18].

Dataset CLIP DINO Expert [18]

External data pool

ImageNet1k 72.5 73.1 77.5 (RN101)

iNaturalist 41.3 38.1 75.4 (RN101)

Food101 89.1 67.1 88.0 (RN101)

NWPU-RESISC 45 93.0 88.3 96.5 (RN101)

Logo 2k 83.8 35.6 78.5 (RN101)

Fine-grained datasets

Stanford Cars 72.3 21 93.4 (RN50)

Stanford Dogs 70.9 68.4 92.0 (RN50)

CUB200 68 67.8 78.3 (RN50)

MIT67 86 71.6 78.9 (RN50)

FGVC-Aircrafts 45.5 36 85.4 (RN50)

the standard 80/20 train/val splitting, and for test-time ex-
periments we follow [8].

C.1. Train-time model adaptation with retrieval

In our train-time experiments we consider a labelled
dataset S and a large auxiliary dataset of images A (see
Sec. 4.1). The goal is to adapt a generic pre-trained model
to the downstream labelled task S. The performance is eval-
uated on held out data T that is not used for further adap-
tation. This mimics the typical model customization sce-
nario (transfer learning [1,18]) solved with supervised fine-
tuning. We pick S to be a labelled fine-grained classification
dataset from the ones listed in Sec. 4.1.

In this scenario, we optimize our models2 across dif-
ferent datasets3 using SGD with momentum 0.9 and we
use linear warm-up cosine annealing learning rate (we use
4 warm-up epochs, start learning rate 1e-5 and minimum
learning rate 1e-6), other hyper-parameters are reported in
Tab. 6. We fix mb to 16k samples.

C.2. Test-time model adaptation with retrieval

In our test-time experiments we evaluate how well a
given pre-trained model can adapt using an unlabelled
dataset T . In particular, we are given a labelled dataset S
that represents the downstream task and has the same la-

2 For consistency, we keep the same hyper-parameters even when using
the self-supervised pre-trained ResNet50 from [7].

3 In case of Sup. FT 20%, to reduce the risk of over-fitting, we decrease
the number of epochs to 30 and consider an halved batch size.

bel space as T but its covariates are shifted. As in previous
experiments the auxiliary data pool A is taken as the con-
catenation of the datasets listed in Sec. 4.1. We evaluate
downstream performance with Top1 accuracy on different
domains for DomainNet-126 and across different classes for
VisDA-C.

Also, in this case we train our models4 on differently
sized target datasets5 use SGD with momentum 0.9 and we
use linear warm-up cosine annealing learning rate (we use
4 warm-up epochs, start learning rate 1e-5 and minimum
learning rate 1e-6), other hyper-parameters are reported in
Tab. 6. Since both target datasets for TTA are larger than the
fine-grained used in our train-time experiments, we increase
the size of the memory bank to 64k samples. While, when
working with 1% and 10% of T we use mb = 16k.

D. Datasets details
Train-time adaptation and auxiliary datasets We
choose both our fine-grained and the auxiliary datasets such
that they cover different domains and are publicly available
for download. Detailed data statistics are reported in Tab. 7.

Test-time adaptation datasets Following previous liter-
ature on test-time domain adaptation [8, 57, 65] we use
VisDA-C [46] and DomainNet-126 [45] for evaluating our
method on TTA and for comparing against baselines. Since
DomainNet has noisy labels, we follow [8] and use a subset
of it that only contains 126 classes from 4 domains (Real,
Sketch, Clipart and Painting). We therefore evaluate our
method on 7 domain shifts constructed from these 4 do-
mains. Only for VisDA-C we compare the per-class top-1
accuracy, and then aggregate them by averaging.

E. Experiments design
In this section we further discuss the main motivations of

our experimental study and the main baseline methods we
used to evaluate T3AR .

Fairness of comparison with existing adaptation meth-
ods. Our experiments are aimed at showing the value of
using a new problem formulation for model adaptation that
allows retrieval of external information. Hence, rather than
aiming at comparing against other algorithms in similar set-
tings, we use existing Train- or Test-Time algorithms to pro-
vide strong baselines to quantify what is the value of addi-
tional data for downstream adaptation. Our main contribu-
tion is to show that this setting can significantly improve ac-
curacy, while still being widely applicable (e.g., unlabelled

4 In the TTA experiment, for consistency with the literature, we do not
use backbones pre-trained with self-supervised objectives [7].

5 In case of TTA on 1% and 10%, to reduce the risk of over-fitting, we
decrease the number of epochs to 30 but do not reduce the batch size.
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Table 6. Detailed hyper-parameters configurations. Ref. refers to the experiment (Table and adaptation method) where the model is
mentioned. Pre-tr. Arch. describes the architecture and the pre-training objective used. Pre-tr. data refers to the pre-training data used to
build the pre-trained architecture. Target data refers to the downstream classification dataset used for evaluation. For TTA it is the same as
the pre-training dataset. LR is the base learning rate (with linear ramp-up and cosine decay and SGD with momentum 0.9). WD is weight
decay. MixUp refers to the amount of data augmentation used, where 0. corresponds to no Mixup while 1. is the maximum amunt of data
augmentation allowed. Batch Size is the batch size considered (splitted across multiple GPUs, 8 Tesla V100).

Train-Time Adaptation
Ref Pre-tr. Arch. Pre-tr. data Target data LR WD Mixup Batch Size Epochs

Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k Stanf. Cars 0.1 0.01 0.1 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k Aircrafts 0.1 0.01 0.1 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k CUB200 0.1 0.01 0. 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k MIT-67 0.1 0.01 0.1 1024 100
Tab. 1, Sup. FT 3 Sup. RN50 2 IN1k Stanf. Dogs 0.01 0.01 0. 512 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k Stanf. Cars 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k Aircrafts 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k CUB200 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k MIT-67 0.1 1e-4 0. 1024 100
Tab. 1, T3AR 3 Sup. RN50 2 IN1k Stanf. Dogs 0.01 1e-4 0. 512 100

Test-Time Adaptation
Ref Arch. Pre-tr. data Target data LR WD MixUp Batch Size Epochs

Tab. 2, T3AR 3 Sup. RN50 4 DomainNet-126 DomainNet-126 0.1 1e-4 0. 1024 30
Tab. 2, T3AR 3 Sup. RN50 4 VisDA-C VisDA-C 0.1 1e-4 0. 1024 30

Table 7. The number of training images, testing images and classes as well as the URL to download the dataset are listed below. The top
part contains the auxiliary datasets in A, the middle part lists our fine-grained datasets and the bottom part contains test-time adaptation
datasets.

Dataset Training Images Testing Images # Classes URL
NWPU-RESISC45 [14] 25,200 6300 45 https://www.tensorflow.org/datasets/catalog/resisc45

Food-101 [5] 75,750 25,250 101 https://www.tensorflow.org/datasets/catalog/food101

Logo 2k [58] 134,907 32,233 2341 https://github.com/msn199959/Logo-2k-plus-Dataset

iNaturalist [25] 265,213 3030 1010 https://github.com/visipedia/inat_comp

iMaterialist [41] 965,782 9639 2019 https://github.com/malongtech/imaterialist-product-2019

Imagenet [17] 1,281,167 50,000 1000 http://image-net.org/download

CUB-200 [56] 5994 5794 200 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

Stanford Cars [31] 8144 8041 196 https://ai.stanford.edu/˜jkrause/cars/car_dataset.html

FGVC-Aircrafts [29] 6667 3333 100 https://www.robots.ox.ac.uk/˜vgg/data/fgvc-aircraft/

CUB200 [29] 5994 5794 200 https://www.vision.caltech.edu/datasets/cub_200_2011/

MIT-67 [29] 5360 1340 67 https://web.mit.edu/torralba/www/indoor.html

Stanford Dogs [29] 12000 8580 120 http://vision.stanford.edu/aditya86/ImageNetDogs

DomainNet-126 [8, 45] 142334 - 126 http://ai.bu.edu/M3SDA/

VisDA-C [46] 152397 55388 12 https://github.com/VisionLearningGroup/taskcv-2017-public

images with a wide domain coverage are readily available
from web-scale datasets).

Train time experiments In the training time experiments
we are given a pre-trained model on some pre-training data
(pre-trained either with supervision or self-supervision), a
labelled dataset S and an unlabelled target dataset T . The
goal is to adapt the model so that its performance on T is
high. This is the standard transfer learning [1, 18] setting.
We therefore use supervised fine-tuning as strong baselines

(with hyper-parameter search Tab. 6). However, note that
T3AR is allowed to leverage an auxiliary unlabelled dataset
A to further improve adaptation. In general, supervised
fine-tuning methods are not designed to exploit side infor-
mation in A. In this case one can resort to semi-supervised
techniques to leverage a large set of unlabelled data (e.g.
FixMatch [51] or CoMatch [34]). However, these methods
cannot be applied in this scenario, since they assume that the
labelled dataset S and the unlabelled dataset A are sampled
from the same distribution. In our setting, A is more general
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Table 8. Classification accuracy (%) on 7 domain shifts of DomainNet-126. All methods use ResNet-50 backbone. Bold is the highest.
Performance of methods from the literature are taken from the cited papers [8, 26, 28, 35]. In Tab. 2 we report the accuracy as the number
of samples available in T decreases.

Method Source-free R→C R→P P→C C→S S→P R→S P→R Avg.
MCC [26] no 44.8 65.7 41.9 34.9 47.3 35.3 72.4 48.9

Source only - 55.5 62.7 53.0 46.9 50.1 46.3 75.0 55.6
TENT [57] yes 58.5 65.7 57.9 48.5 52.4 54.0 67.0 57.7
SHOT [35] yes 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1

AdaContrast [8] yes 70.2 69.8 68.6 58.0 65.9 61.5 80.5 67.8
T3AR (w/o retrievals) yes 68.5 67.9 63.4 53.1 63.9 52.7 80.4 64.3

T3AR (Ours) yes 70.2 70.0 66.8 60.9 64.1 59.8 81.0 67.5

Table 9. Classification accuracy (%) on VisDA-C train → val. All methods use ResNet-101 backbone except the on-target rows, which use
ResNet-18 as student network. Bold is the highest; underline is the second highest. Performance of methods from the literature are taken
from the cited papers [8, 26, 28, 35]. In Tab. 2 we report the accuracy as the number of samples available in T decreases.

Method source-free plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
CAN [28] no 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
MCC [26] no 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

Source only - 57.2 11.1 42.4 66.9 55.0 4.4 81.1 27.3 57.9 29.4 86.7 5.8 43.8
SHOT [35] yes 95.3 87.5 78.7 55.6 94.1 94.2 81.4 80.0 91.8 90.7 86.5 59.8 83.0
+ On-target yes 96.0 89.5 84.3 67.2 95.9 94.2 91.0 81.5 93.8 89.9 89.1 58.2 85.9

AdaContrast [8] yes 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
+ On-target yes 97.2 87.0 86.7 81.7 95.5 91.6 93.5 86.6 95.3 90.9 92.8 47.9 87.2

T3AR (w/o retrievals) yes 90.3 83.9 72.4 73.0 93.1 88.9 82.6 82.4 90.1 87.8 90.3 40.5 81.3
T3AR (Ours) yes 96.8 87.5 86.2 74.8 96.7 90.5 93.8 82.4 91.7 91.3 91.1 45.9 85.7
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Figure 7. Classification Top1 Accuracy (%) of test-time adapta-
tion methods on DomainNet-126 as the number of available target
data T increases. We show that exploiting retrieved samples helps
T3AR especially in the low data regime.

and does not need to be sampled from the same distribu-
tion as S (A can contain many more concepts than the ones
present in S). Therefore, a reasonable baseline is to allow
a fine-tuning method to leverage A somehow. The easiest
way to do this is by using the whole dataset A to pre-train
the model. Since A is, in general, unlabelled, we use a self-
supervised objective function (DINO [7]). Then, this pre-

Table 10. Comparison of T3AR with a self-supervised model pre-
trained on A and then fine-tuned on S. We observe that the average
accuracy of T3AR outperform the retraining paragon.

Dataset Stanf. Cars CUB200 MIT67

Self-Sup. pre-tr. on A 91.4 79.2 74.6
T3AR 93.0 80.3 75.9

trained model is used as starting checkpoint for fine-tuning
on S. In this way, the final adapted model contains in its
weights both information on the samples from A and sam-
ples from S exactly as in the case of T3AR . We call this
adaptation strategy Self-Sup. pre-training on A and compare
it with T3AR in Tab. 10. Note that T3AR outperforms this
paragon. This suggests that, while pre-training a model on
as many data as possible is a strong baseline, it is possible to
further improve downstream performance by looking back
at pre-training data after the downstream ones are available
(this observation is aligned with empirical results in [54]).

Test time experiments In the test time experiments we
are given a pre-trained model on some labelled dataset S
consisting of source data and an unlabelled target dataset
T . The goal is to adapt the model to T (without using S).
This is the standard test-time adaptation setting [8, 35, 57].
We therefore compare T3AR with strong TTA baselines.
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Furthermore, as typically done in the literature, we add a
direct comparison with UDA methods [26, 28], these allow
the method to look back at S once T is obtained. The results
are reported in Tab. 2, Tab. 8 and Tab. 9.

Datasets subsampling To test the efficacy of external
data both in train and test time experiments we tested our
method and baselines using both full sized and subsampled
downstream datasets. In particular, we subsampled each
dataset using stratified sampling.

F. Detailed results on TTA experiments
In Tab. 8 and Tab. 9 we report Top1 accuracy on all the

domains in DomainNet-126 and on all the classes in VisDA-
C. We compare our method with state-of-the-art UDA and
TTA methods.

In Tab. 8 our method outperforms MCC even though it
has not access to the source datasets. Our method also com-
pares favourably with TTA baselines, being behind only to
AdaContrast on the entire dataset size but being the best
when fewer samples are available during adaptation Tab. 2.
Our method performs better than others when only 1% and
10% of the datasets are allowed for adaptation since it lever-
ages external information from the retrieved samples. In
fact, all other methods only rely on synthetic data aug-
mentations to drive the learning process, and therefore, are
not fully able to describe the complex target data manifold
when data are limited. Interestingly, as more samples are
allowed to be used, synthetic data augmentations seems to
suffice and the performance of other methods gets increas-
ingly better. We note that our method achieves the best per-
formance on 3 out of 7 domain shifts and it is on par with
AdaContrast on one (R→C).

In Tab. 9 we compare our method on the VisDA-C adap-
tation dataset. It gets the best accuracies on the bcycl
class and outperforms AdaContrast (a strong TTA adapta-
tion baseline [8]) on 4 our of 12 classes. Furthermore, Tab. 2
we show, once again, that our method compares favourably
w.r.t. the baselines when few samples are allowed for adap-
tation.

Sensitivity to the number of retrievals In Fig. 8 we
study the sensitivity of T3AR as the number of retrieved
nearest neighbors increases. The x-axis represents the
number of number of retrievals allowed per sample, with
NNs = 1 we can retrieve as many samples as there are in
the target dataset, with NNs = 2 twice its size, etc. We
also report the performance of randomly retrieving as many
samples as there are in the target dataset (diamond mark-
ers at NNs = 0). Our results show a diminishing return
in performance as the number of NNs increases. Since re-
trieving more samples increases (linearly) adaptation time,
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Figure 8. Accuracy as a function of the number of the re-
trievals. Classification Top1 Accuracy (%) of T3AR on train
time adaptation on fine-grained classifications datasets as a func-
tion of the number of retrieved nearest neighbors. We denoted
with diamonds the reference performance when random retrievals
are used, in this case the number of retrievals is 1. Note that as
the number of retrievals increases, as well as the adaptation time,
T3AR saturates its performance around 2-5 retrievals across dif-
ferent datasets.

our experiments suggest that a good trade-off, that holds
across different datasets and allows to discount compute
over marginal accuracy improvements, is to retrieve twice
as many samples as the target datasets.

F.1. Main limitations

In our ablation studies we have showed that adding
samples from A to adapt a downstream model leads to
improved downstream performance on various adaptation
benchmarks. Nonetheless, the user is responsible to bring
in relevant data A (as relevant as possible to improve the
contrastive loss on negative pairs) and to maintain A as
it grows larger and larger. In practice, there is no bound
on the size of A and even if similarity based retrievals are
very fast, their throughput staturates as more samples are
added. We leave to future work how to leverage fast ap-
proximate searches [23, 27] on large indexed databases and
fast database re-indexing.
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